OTPABOYHUK

рациоинженера

Radio Engineer's Handbook Llte*

Формулы, графики, таблицы пересчета

Электронная версия справочника

Группа компаний «Диполь» (основана в 1992 г.) занимает лидирующие позиции в области разработки и реализации высокотехнологичных проектов для промышленных отраслей России и является ведущим поставщиком технологических знаний для специалистов радиоэлектронных производств.

«Диполь» выполняет весь комплекс работ по созданию современного предприятия, проектирует и возводит производственные помещения с инженерной инфраструктурой, осуществляет оснащение инновационным технологическим, измерительным и испытательным оборудованием, поставляет технологические материалы и программное обеспечение собственной разработки.

Поставка оборудования и программного обеспечения

- Производство электроники и микроэлектроники
- Радиоизмерения, ЭМС, метрологическое оборудование
- Испытательное и измерительное оборудование
- Метрология и поверка
- Ручная пайка и визуальный контроль
- Инженерная инфраструктура
- Оснащения производственных помещений и персонала
- Промышленная и лабораторная мебель собственного производства
- ПО для управления производством и автоматизации измерений
- 3D-принтеры
- Технологические материалы

Услуги и сервис

- Технологический аудит и экспертиза
- Проектирование и строительство
- Управление производством
- Аддитивное производство
- Метрологические услуги
- ESD аудит

Санкт-Петербург

ул. Большая Монетная, д. 16 +7 (812) 702-12-66

Москва

Огородный проезд, д. 16/1 8 (800) 200-02-66

www.dipaul.ru info@dipaul.ru

Справочник радиоинженера

Формулы, графики, таблицы пересчета

Справочник разработан и составлен специалистами АО «НПФ «Диполь» с целью облегчения пользования радиотехническими формулами, таблицами пересчета величин, понимания часто используемых в радиотехнике терминов, обозначения диапазонов СВЧ, использования антенн и антенных систем при измерениях и соблюдения требований по ЭМС при разработке РЭУ.

Авторы:

Шостак А.А. (Технический специалист , ГК Диполь) Исаков А.В. (Специалист по маркетингу , ГК Диполь)

ции в СМИ и размещения в иных открытых источниках.

г. Санкт Петербург, 2025

Запрещается дублирование материалов справочника, как в полном объеме, так и отдельных ее частей без письменного разрешения компании: Акционерное общество «Научно-производственная фирма «Диполь» (ИНН: 7804137537, ОГРН: 1027802497656, юридический адрес: 197101, г. Санкт-Петербург, ул. Большая Монетная, дом 16, корпус 45, литер Я, пом. 52, в частности: перевод на другие языки и передача в любой форме и с помощью любых средств: электронных, механических, фотокопий, записей или иных средств с целью тиражирования, публика-

Исключения:

Исключение составляют все письменные соглашения; предоставление справочника пользователям вместе с технической документацией; для целей, связанных с обучением или профессиональной деятельностью пользователя.

Все значения, формулы и другие данные, содержащиеся в этом документе, носят исключительно справочный характер.

Содержание

Физические константы	3
Электротехника	5
Радиоизмерения	12
Преобразования между линейными и логарифмическими значениями	21
Антенны и антенные системы	30
Электромагнитная совместимость	41
Измеряем правильно	45
Системы оптической связи	55
Термины и сокращения	59
Заметки	63

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.

1. Физические константы

Название константы	Обозна- чение	Приблиз. значение	Еденица измер.	Применение и примечания
Скорость света	c	3 • 108	м/с	Ключевая для расчёта длины волны. λ = c / f
Элементарный заряд (заряд электрона)	e	1.6 • 10 ⁻¹⁹	Кл	Расчёт тока, заряд частиц, работа полупроводниковых приборов.
Постоянная Планка	h	6.63 • 10 ⁻³⁴	Дж•с	Квантовая физика: энергия фотона $E = h \bullet f$, шумы.
Постоянная Больцмана	k	1.38 • 10 ⁻²³	Дж/К	Тепловые шумы: мощность шума $P = k \bullet T \bullet B$.
Электрическая постоянная (диэлектрическая проницаемость вакуума)	$oldsymbol{\mathcal{E}}_0$	8.85 • 10 ⁻¹²	Ф/м	Расчёт ёмкости, волнового сопротивления, параметров линий передачи.
Магнитная постоянная		4π • 10 ⁻⁷ ≈ 1.2566 • 10 ⁻⁶		Расчёт индуктивности,
(магнитная проницаемость вакуума)	μ_{o}	Гн/м		волнового сопротивления.
Постоянная Стефана- Больцмана	σ	5.67 • 10 ⁻⁸	BT/(M ² •K ⁴)	Излучение абсолютно чёрного тела (расчёт теплового излучения компонентов).
Волновое сопротивление вакуума	Z_{o}	120π≈376.73	Ом	Характеристическое сопротивление свободного пространства. Важно для теории антенн и ЭМ-волн.
Постоянная Фарадея	F	9.65 • 104	Кл/моль	Электрохимия (для расчёта аккумуляторов и батарей).

Таблица приставок СИ для степеней десяти

Приставка	Символ	Степень	Пример
тера	T	10 ¹²	ТГц (терагерц)
гига	Γ	10 ⁹	ГГц (гигагерц)
мега	M	10 ⁶	МОм (мегаом), МГц (мегагерц)
кило	κ	10 ³	кОм (килоом)
милли	м	10-3	мВ (милливольт), мА (миллиампер)
микро	мк	10-6	мкФ (микрофарада), мкс (микросекунда)
нано	н	10-9	нФ (нанофарада), нс (наносекунда)
пико	n	10-12	пФ (пикофарада)
фемто	ф	10-15	фс (фемтосекунда)
атто	а	10-18	ас (аттосекунда)

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.

2. Электротехника

Закон Джоуля-Ленца

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени, в течение которого электрический ток протекал по проводнику.

$$Q = I^2 \cdot R \cdot t$$

 ${\it Q}$ — количество выделившейся **теплоты**, измеряется в **Джоулях** (**Дж**)

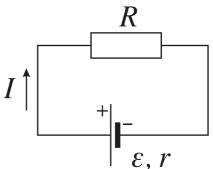
I — сила тока, измеряется в Амперах (A)

R — сопротивление проводника, измеряется в Омах (Ом)

t — время, измеряется в секундах (с)

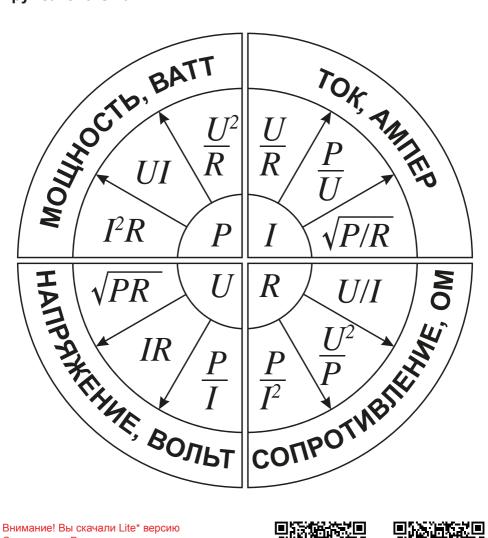
Закон Ома для полной цепи

Сила тока в замкнутой цепи прямо пропорциональна электродвижущей силе (ЭДС) источника тока и обратно пропорциональна полному сопротивлению цепи.


$$I = \varepsilon / (R + r)$$

I — сила тока в цепи, измеряется в **Амперах (A)**

 ${\cal E}$ (эпсилон) — Электродвижущая сила (ЭДС) источника тока, измеряется в Вольтах (В)

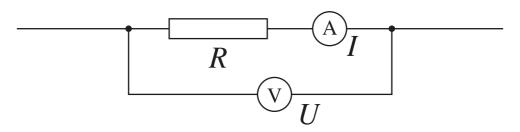

R — Внешнее сопротивление (нагрузка, все потребители в цепи), измеряется в Омах (Ом)

r — Внутреннее сопротивление источника тока (например, сопротивление аккумулятора), измеряется в **Омах (Ом)**

Круг закона Ома

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.

Закон Ома для участка цепи


Сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению.

$$I = U / R$$

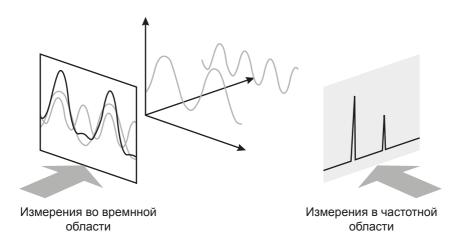
I — сила тока в цепи, измеряется в Амперах (A)

U — напряжение на участке цепи, измеряется в Вольтах (В)

R — сопротивление участка цепи, измеряется в Омах (Ом)

Первый Закон Кирхгофа

Алгебраическая сумма токов в любом узле (точке цепи, в которой сходится три или более проводника) электрической цепи равна нулю. При этом:


• Токи, втекающие в узел, принято считать положительными

3. Радиоизмерения

Взаимосвязь между временной и частотной областями.

Измерительные тракты и области их применения

Сопротивление тракта	Мощность	Напряжение	Примечание
50	1 мВт	0,224 B	Радиотехника
60	1 мВт	0,245 B	Радиотехника (устар.)
75	1 мВт	0,274 B	Телевизионная техника
600	1 мВт	0,775 B	Акустика

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.

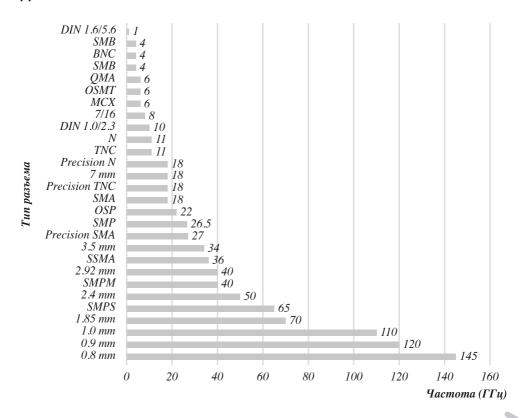
Классификация частотных диапазонов и их применение

Названия диапазонов	Диапазон частот	Длина волны	Основные применения
Очень низкие (ОНЧ, VLF)	3–30 кГц	100–10 км	Навигационные системы (LORAN-C), часы, связь с подлодками
Низкие (НЧ, LF)	30–300 кГц	10–1 км	Дальняя морская и авиационная навигация (NDB), АМ-радиовещание (ДВ-диапазон)
Средние (СЧ, МF)	300–3000 кГц	1 км-100 м	AM-радиовещание (СВ-диапазон), морская радиотелефония, аварий- ные маяки (COSPAS-SARSAT)
Высокие (ВЧ, НF)	3–30 МГц	100–10 м	Короткие волны (КВ): любительская радиосвязь, дальней связь (за счёт отражения от ионосферы), военная связь, морская и воздушная связь
Очень высокие (ОВЧ, VHF)	30–300 МГц	10–1 м	УКВ-диапазон: FМ-радиовещание, телевидение (каналы 1-12), морская связь, авиационная связь, спасательные службы (полиция, скорая помощь), любительская радиосвязь
Ультра высокие (УВЧ, UHF)	300-3000 МГц	1 м–10 см	Телевидение (каналы с 21 и выше), сотовые телефоны (GSM, 3G, 4G, 5G), Wi-Fi, Bluetooth, GPS/ГЛОНАСС, спутниковая связь, рации (PMR, LPD)
Сверх высокие (СВЧ, SHF)	3–30 ГГц	10–1 см	Микроволны: спутниковое телевидение и интернет, радиорелейные линии связи, радары, Wi-Fi (5ГГц), сотовая связь (5G)
Крайне высокие (КВЧ, ЕНГ)	30–300 ГГц	1 см–1 мм	Миллиметровые волны: высокоско- ростная беспроводная передача данных (WiGig), научные исследова- ния (радиоастрономия), перспектив- ные системы связи (6G и выше), автомобильные радары
Терагерцо- вые	300 ГГц–3 ТГц	1-0.1 мм	Перспективные системы связи, медицинская визуализация, спектроскопия, безопасность (сканеры)

Диапазоны СВЧ

Обозначе- ние	Диапазон частот	Диапазон длин волн	Основное применение
L-band	1 - 2 ГГц	30 - 15 см (дециметровые)	Спутниковая навигация (GPS, ГЛОНАСС), мобильная спутниковая связь, сотовая связь (4G/5G).
S-band	2 - 4 ГГц	15 - 7.5 см	Радары, Wi-Fi (2.4 ГГц), спутниковая связь, 5G.
C-band	4 - 8 ГГц	7.5 - 3.25 см	Спутниковое ТВ и связь (C-band downlink), радары, радиорелейные линии.
X-band	8 - 12,4 ГГц	2.42 - 1.67 см	Спутниковая связь (военная), радары (погодные, управления оружием), радиоастрономия.
Ku-band	12,4 - 18 ГГц	10 - 1 м	Спутниковое ТВ (DTH), спутниковый интернет, радары высокого разрешения.
K-band	18 - 26,6 ГГц	1.67 - 1.13 см	Автомобильные радары (24 ГГц), астрономия, спутниковая связь.
Ka-band	26,6 - 40 ГГц	1.13 - 0.75 см	Высокоскоростной спутниковый интернет (Starlink), спутниковая связь нового поколения.
U +V-band	40 - 75 ГГц	0.75 - 0.4 см (миллиметровые)	Экспериментальная беспроводная связь (WiGig - 60 ГГц), научные исследования.

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.



Механическая совместимость СВЧ разъемов

	SMA	3.50 mm	2.92 mm	2.40 mm	1.85 mm
SMA	8	⊗	0		
3.50 mm	8	8	0		
2.92 mm	0	0	0		
2.40 mm				0	0
1.85 mm				0	⊗

Типы зарубежных СВЧ разъемов и их рабочие частотные диапазоны

4. Преобразования между линейными и логарифмическими значениями

Линейные единицы → **Логарифмические** (дБ)

Вольты → дБм	$\partial \mathcal{E}_{\mathcal{M}} = 20 \cdot log(Boльm) + 13$
Амперы → дБм	$\partial \mathcal{E}_{\mathcal{M}} = 20 \cdot log(Amnep) + 47$
Ватты → дБмкВ	$\partial \mathcal{E}$ мк $B = 10 \cdot log(Bamm) + 137$
Амперы → дБмкА	$\partial \mathcal{E}$ мк $A = 20 \cdot log(A$ мпер) + 154
Ватты → дБмкА	$\partial \mathcal{E}$ мк $A = 10 \cdot log(Bamm) + 103$
Вольты → дБмкА	$\partial \mathcal{E}$ мк $A = 20 \cdot log(Boльm) + 86$
Ватты → дБм	$\partial \mathcal{E}_{\mathcal{M}} = 10 \cdot log(Bamm) + 30$
Вольты → дБмкВ	$\partial \mathcal{E}$ мк $B = 20 \cdot log(Boльm) + 120$

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.

Логарифмические → **Линейные** (обратные преобразования)

дБм → Ватты	$Bammы = 10^{\left(\frac{\partial E_{\mathcal{M}} - 30}{10}\right)}$
дБмкВ → Вольты	B ольты = $10^{\left(\frac{\partial E$ мк $B-120}{20}\right)}$
дБмкА → Амперы	$Aмперы = 10^{\left(\frac{\partial БмкA - 120}{20}\right)}$
дБОм → Ом	$\Omega = 10^{\left(\frac{\partial EO_{\mathcal{M}}}{20}\right)}$
дБмкВ → Ватты	$Bammы = 10^{\left(\frac{\partial E M \kappa B - 137}{10}\right)}$
дБмкА → Ватты	$Bammы = 10^{\left(\frac{\partial E M \kappa A - 103}{10}\right)}$
дБм → Вольты	$Bольты = 10^{\left(\frac{\partial EM - 13}{20}\right)}$
дБмкА → Вольты	B ольты = $10^{\left(\frac{\partial \mathcal{E}$ мк $A-86}{20}\right)}$
дБм → Амперы	$Aмперы = 10 \left(\frac{\partial \mathcal{E}_{M} - 47}{20} \right)$
дБмкВ → Амперы	$Aмперы = 10 \left(\frac{\partial \mathcal{E}M\kappa B - 154}{20} \right)$

Типовые значения дБ используемые для быстрых расчетов

	Отношение мощностей (Р₂/Р₁)			ношение жений (V₂/V₁)
Значение	Приблизи- тельное	Точное	Приблизи- тельное	Точное
0,1 дБ	±2 %	+2,3 % / -2,3 %	±1 %	+1,16 % / -1,15 %
0,2 дБ	±4 %	+4,7 % / -4,5 %	±2 %	+2,33 % / -2,23 %
0,5 дБ	±10 %	+12,2 % / -10,9 %	±5 %	+5,9 % / -5,5 %
1 дБ	±20 %	+25,9 % / -20,5 %	±10 %	+12,2 % / -11,9 %
3 дБ	2	1,995	1,4	1,412
	0,5	0,501	0,7	0,708
3,02 дБ	2	2,0	1,414	√2
	0,5	0,5	0,707	1/√2
5 дБ	3	3,16	1,8	1,778
	0,33	0,316	0,6	0,562
6 дБ	4	3,98	2	1,995
	0,25	0,251	0,5	0,501
10 дБ	10	10	3	3,162
	0,1	0,1	0,3	0,316
20 дБ	100	100	10	10
	0,01	0,01	0,1	0,1
40 дБ	10000	10000	100	100
	0,0001	0,0001	0,01	0,01

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.

Поправочные коэффициенты для сложения значений в децибелах

Разность, дБ	Мощность (дБ)	Напряжение (дБ)
0	3,01	6,02
1	2,54	5,53
2	2,12	5,08
3	1,76	4,65
4	1,46	4,25
5	1,19	3,88
6	0,97	3,53
7	0,79	3,21
8	0,64	2,91
9	0,51	2,64
10	0,41	2,39
11	0,33	2,16
12	0,27	1,95
13	0,21	1,75
14	0,17	1,58
15	0,14	1,42
16	0,11	1,28
17	0,09	1,15
18	0,07	1,03
19	0,05	0,92
20	0,04	0,83

5. Антенны и Антенные системы

Внутреннее сопротивление свободного пространства

$$Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120 \cdot \pi \Omega \approx 377 \Omega$$

 $Z_{\it 0}$ — внутреннее (волновое) сопротивление свободного пространства, в Ом.

 μ_{θ} — магнитная проницаемость вакуума ($4\pi \cdot 10^{-7} \ \Gamma$ н/м).

 \mathcal{E}_0 — электрическая проницаемость вакуума (8.854 • $10^{-12}~\Phi/M$).

Значение важно при расчёте полей в свободном пространстве, например, для оценки соотношения электрического и магнитного полей в плоской волне.

Связь между электрическим и магнитным полями

$$E = Z_0 \cdot H$$
 или $H = \frac{E}{Z_0}$

E — напряжённость электрического поля, \mathbf{B}/\mathbf{m} ,

 $oldsymbol{H}$ — напряжённость магнитного поля, $oldsymbol{A}/oldsymbol{\mathsf{M}}$,

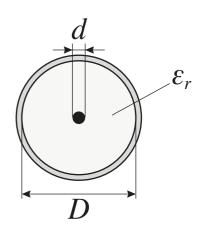
 Z_{θ} — волновое сопротивление свободного пространства (377 Ом).

В плоской электромагнитной волне в вакууме отношение Е/Н всегда равно ${\bf Z}_{\it 0}$. Это ключевое соотношение в теории антенн и распространения радиоволн.

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.

Волновое сопротивление коаксиальной линии

Формула используется при проектировании коаксиальных кабелей (RG-58, RG-213, LMR-400).


$$Z_L \approx 60\Omega \cdot \sqrt{\frac{1}{\varepsilon_r}} \cdot ln\left(\frac{D}{d}\right)$$

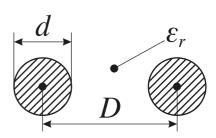
 \mathbf{Z}_L — волновое сопротивление коаксиальной линии, \mathbf{Om} ,

 ${\cal E}_r$ — относительная диэлектрическая проницаемость материала изолятора (безразмерная),

 $m{D}$ — наружный диаметр экрана, $m{\mathsf{w}}$,

d — внутренний диаметр центрального проводника, ${f m}$.

Волновое сопротивление симметричной двухпроводной линии


Используется для расчёта волнового сопротивления воздушных линий, диполей.

$$Z_L \approx 120\Omega \cdot \frac{1}{\sqrt{\varepsilon_r}} \cdot ln\left(\frac{2D}{d}\right) \qquad (npu \ d << D)$$

 $oldsymbol{D}$ — расстояние между проводниками, м,

d — диаметр каждого проводника, м,

 \mathcal{E}_r — относительная диэлектрическая проницаемость среды между проводниками.

Направленность (Directivity)

Направленность — это геометрическая характеристика антенны, не учитывающая потери.

$$D = \frac{P_{max}}{P_{av}}$$
 и $d = 10 \cdot lgD$

D — направленность антенны, безразмерная величина (линейная),

d — направленность в децибелах, дБ,

 ${m P}_{max}$ — максимальная плотность излучаемой мощности в направлении главного лепестка,

 P_{av} — средняя плотность излучаемой мощности по всем направлениям (по сфере).

Коэффициент направленного действия

Коэффициент направленного действия (КНД) — безразмерная величина, характеризующая способность антенны концентрировать излучаемую мощность в определённом направлении по сравнению с сферическим изотропным излучателем, который излучает энергию равномерно во всех направлениях.

$$D = \frac{P_{max}}{P_{av0}}$$
 и $d = 10 lgG$

 $m{D}$ — коэффициент напраленного действия антенны (без потерь, линейной зависимости, размеров);

d — логарифмическое значение коэффициента направленного действия антенны дБ;

 $m{P}_{max}$ — максимальная плотность энергии излучения в направлении пеленгации антенны;

 $m{P}_{av}$ — средняя плотность энергии излучения сферического изотропного излучателя.

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.

Коэффициент полезного действия излучения антенны

Коэффициент полезного действия излучения антенны — безразмерная величина, показывающая, какая доля подводимой к антенне мощности действительно излучается в пространство, а не рассеивается в виде тепла в проводниках, диэлектриках или согласующих элементах.

$$\eta = \frac{G}{D}$$
 или $G = \eta \cdot D$

 $oldsymbol{\eta}$ — коэффициент полезного действия излучения антенны (безразмерный);

G — коэффициент усиления антенны (включая омические потери, безразмерный);

D — коэффициент направленного действия антенны (без потерь, безразмерный).

Практический (действительный) коэффициент усиления антенны

Практический (действительный) коэффициент усиления антенны — реальный коэффициент усиления, учитывающий все виды потерь.

$$G_p = G \cdot (1 - |r|^2)$$

 G_p — практический (действительный) коэффициент усиления антены (включая активные (омические) потери и потери рассогласования (схемные), безразмерный);

 \emph{G} — коэффициент усиления антенны (включая омические потери, безразмерный);

r — коэффициент отражения (безразмерный).

6. Электромагнитная совместимость

Расчет напряженности электромагнитного поля и требуемой мощности для создания этого поля

Преобразование единиц напряжённости поля:

$$\frac{V}{m} = 10^{\left(\frac{dB_{\mu} \, V/m - 120}{20}\right)}$$

 $dB_{\mu}V/M$ — напряжённость поля в децибелах относительно микровольта на метр, V/M — напряжённость поля в вольтах на метр.

Обратное преобразование:

$$dB_{\mu} V/m = 20 \cdot log_{10} \left(\frac{V}{m}\right) + 120$$

Расчет напряженности электромагнитного поля

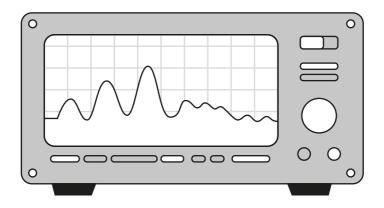
$$\frac{V}{m} = \sqrt{\frac{30 \cdot P_{np\partial} \cdot G}{R}}$$

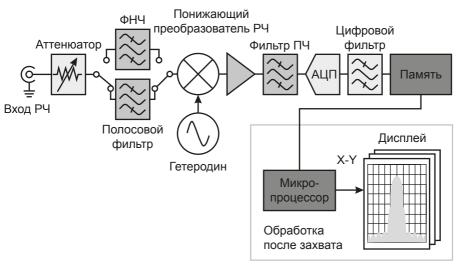
 $oldsymbol{P}_{np\partial}$ — подводимая мощность, Вт,

 ${\it G}$ — коэффициент усиления антенны (линейное),

 ${\it R}$ — расстояние до излучающей антенны, м.

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.





Анализатор спектра

Анализатор спектра — это измерительный прибор, предназначенный для наблюдения и количественного анализа распределения мощности сигнала в частотной области. В отличие от осциллографа, который отображает амплитуду сигнала во временной области, анализатор спектра отображает мощность сигнала в зависимости от частоты, обычно в диапазоне от единиц килогерц до десятков гигагерц.

Типовая блок-схема анализатора спектра

Основные параметры анализатора спектра:

Частотный диапазон: Основной диапазон анализируемых частот (от кГц до десятков ГГц).

Динамический диапазон: Разность (в дБ) между максимальным и минимальным уровнем сигнала, которые анализатор может отобразить одновременно. Определяется уровнем собственных шумов, интермодуляционными искажениями и компрессией.

Уровень собственных шумов (DANL - Displayed Average Noise Level): Уровень шума, который виден на экране прибора. Зависит от полосы RBW. Чем уже RBW, тем ниже видимый уровень шума. Чувствительность прибора определяется этим параметром.

Фазовый шум (Phase Noise): Нестабильность частоты гетеродина. Проявляется как "размазывание" тонкого спектрального пика. Критически важен для измерения слабых сигналов, расположенных рядом с мощными.

Точность измерения уровня (Amplitude Accuracy): Суммарная погрешность, включающая неточность аттенюатора, усиления, частотной характеристики и калибровки.

Разрешение по частоте — RBW (Resolution Bandwidth):Ширина полосы ПЧ-фильтра, определяющая, насколько близкие по частоте сигналы прибор может различить

Полоса видеофильтра — VBW (Video Bandwidth) : Цифровой фильтр после детектора, сглаживающий отображаемый сигнал и уменьшающий флуктуации отображаемого шума.

Максимальный входной уровень: Уровень сигнала, который можно подать на вход без повреждения прибора.

Полоса анализа: Диапазон частот высокоскоростного АЦП , использующегося для анализа и демодуляции широкополосных сигналов, I/Q-данных , захвата кратковременных и нестационарных сигналов.

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.

8. Системы оптической связи

Параметр	Обозн.	Формула	Применение	
Физические	Физические постоянные			
Скорость света в вакууме	c	299 792 458 м/с	Расчёт длины волны, задержки сигнала, дисперсии, ёмкости линии	
Постоянная Планка	h	6.626 · 10 ⁻³⁴ Дж · с	Расчёт энергии фотона, чувствительности приёмников на квантовом уровне	
Волновое число	k	$k = 2\pi / \lambda$	Моделирование распространения света, волновыз мод, интерференции	
Оптические	параметрь	і сигнала		
Длина волны	λ	_	Выбор рабочего окна (O/C/ L-band), совместимость с волокном и оборудованием	
Частота несущей	f	$f = c / \lambda$	Расчёт частотного плана DWDM, спектрального распределения каналов	
Энергия фотона	E	$E = h \cdot f = (h \cdot c) / \lambda$	Расчёт мощности в фотонах, квантовый предел чувстви- тельности приёмника	
Параметры	оптическог	о волокна		
Затухание	α	$P_{out} = P_{in} - \alpha \cdot L$	Расчёт мощности, макси- мальной длины линии без ретрансляторов	
Хромати- ческая дисперсия	D	$\Delta \tau = D \cdot L \cdot \Delta \lambda$	Оценка расширения импуль- са, выбор компенсаторов дисперсии, модуляции	
Поляриза- ционная модовая дисперсия	PMD	$\Delta \tau = PMD_{coeff} \cdot L$	Оценка искажения в высокочастотных системах (>10Гбит/с)	

Параметр	Обозн.	Формула	Применение	
Скорость пер	редачи и м	одуляции		
Битовая скорость	Rb	_	Определение пропускной способности канала, выбор оборудования	
Символьная скорость	Rs	$Rb = Rs \cdot log2(M)$	Проектирование трансиверов, согласование с АЦП/ ЦАП, фильтрами	
Уровень модуляции	M	_	Выбор схемы модуляции (ООК, PAM4, QPSK, QAM) под скорость и OSNR	
Спектраль- ная эффек- тивность	η	$\eta = Rb/BW$	Оптимизация использования спектра, сравнение эффективности модуляций	
Ширина полосы	BW	$BW = R_s \cdot \frac{1+\alpha}{2}$	Расчёт требуемой полосы усилителей, фильтров, мультиплексоров	
Системные у	равнения			
Мощность приемника	_	$P_{rx}=P_{tx}-\alpha\cdot L-nomepu-sanac$	Проектирование линии: проверка, хватит ли мощности до приёмника	
Чувствите- льность приёмника	P_{min}	_	Выбор приёмника, расчёт максимальной длины или минимального С/Ш	
Динамичес- кий диапа- зон	_	P_{sat} – P_{min}	Обеспечение работы при разных уровнях сигнала (без перегрузки и потерь)	

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.

9. Термины и сокращения

Обозначения

AC - переменный ток

ADC (analog-to-digital converter), АЦП - аналого-цифровой преобразователь

AM - сигнал с амплитудной модуляцией

 $C_{\it M}$ - сантиметр, одна сотая метра

dBm - дБ со ссылкой на 1 МВт

 $dB\mu A$, $\partial E M \kappa A$, со ссылкой на 1 мкА

 $dB\mu V$, $\partial E M\kappa B$, со ссылкой на 1 мкВ

 ${\it CRO}$ – Cathode Ray Oscilloscope - электронно-лучевой осциллограф

 $oldsymbol{DC}$ - постоянный ток

DSO (Digital Storage Oscilloscope) – цифровой запоминающий осциллограф

 $oldsymbol{E}$ - составляющая электрического поля электромагнитного поля.

 $E/M\,$ - отношение электрического поля (E) к магнитному полю (H)

EMC - электромагнитная совместимость

ЕМІ - электромагнитные помехи

FM – сигнал с частотной модуляцией

GHz - гигагерц, один миллиард Герц (1 000 000 000 Герц)

GNSS (Global Navigation Satellite System), ГНСС - глобальная навигационная спутниковая система

Hz – Герц, единица измерения частоты

 ${m I}$ – электрический ток

kHz - килогерц, одна тысяча Герц (1000 Герц)

Low-noise amplifier, (МШУ) – малошумящий усилитель

 λ – Лямбда, символ длины волны, расстояния, которое проходит волна за период времени, необходимый для одного полного цикла колебаний

MHz - мегагерц, один миллион Герц (1 000 000 Герц)

MSO (Mixed Signal Oscilloscope) - осциллограф смешанных сигналов

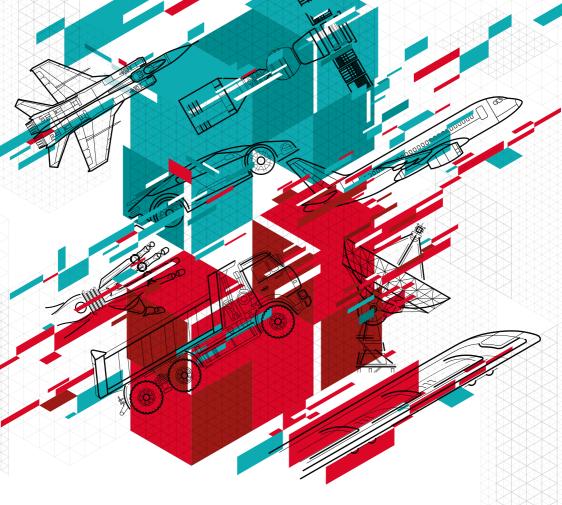
 μm - микрометр, единица измерения длины, одна миллионная часть (0,000001) метра

 \emph{m} – метр, основная единица измерения длины в метрической системе

mil - единица измерения длины, одна тысячная (0,001) дюйма

Для заметок		

Внимание! Вы скачали Lite* версию Справочника Радиоинженера.



Для заметок

Модернизация и технологическая поддержка предприятий радиоэлектронной промышленности

Санкт-Петербург

ул. Большая Монетная, д. 16 +7 (812) 702-12-66

Москва

Огородный проезд, д. 16/1 8 (800) 200-02-66

www.dipaul.ru info@dipaul.ru

Цифровые осциллографы Генераторы СВЧ сигналов Генераторы сигналов произвольной формы Анализаторы спектра

Программируемые источники питания и нагрузки Измерители мощности Источники измерители

Автоматизация измерений и испытаний в:

- радиоэлектронике
- микроэлектронике
- автомобилестроении
- 9MC

Управление процессом поверки по ГОСТ

Формирование протоколов измерений

Ведение электронных журналов

Радиоизмерительные решения высокой мощности

VIKING www.vkg.ru

Промышленная и антистатическая мебель

Шкафы сухого хранения Антистатическое оснащение