

Agilent Technologies

About Agilent's RF and Microwave Test Accessories Catalog 2006/07

The Agilent Technologies 2006/07 RF and Microwave Test Accessories Catalog allows you to quickly and conveniently research the highest quality RF and microwave test accessories in the industry. Our test accessories are the result of decades of innovation in creating the building blocks used in our test and measurement products and solutions. We've evolved these key technologies into a broad line of RF and microwave test accessories for use in your test and measurement solutions.

In addition to this catalog, our Web Site (www.agilent.com/find/mta) provides the latest news, product and support information. We encourage you to visit the site, where you can obtain updated technical information and download technical literature on Agilent's high-performance RF and microwave test accessories.

Agilent Technologies: An Overview

While, physically, we have outgrown HP's garage, we continue to live the values handed down from Bill and Dave: uncompromising integrity; trust, respect and teamwork; and innovation that makes a difference.

Our products and technology innovations continue to enable real breakthroughs that matter, blazing trails in the fields that are shaping the modern world.

Quality

Overview

Agilent delivers critical tools and technologies that sense, measure and interpret the physical and biological world. Our innovative solutions enable a wide range of customers in communications, electronics, life sciences and chemical analysis to make technological advancements that drive productivity and improve the way people live and work.

Agilent Technologies' Test and Measurement Organization

Our test and measurement business provides standard and customized solutions that are used in design, development, manufacture, installation, deployment and operation of electronics equipment and communications networks and services.

Markets: Our test and measurement markets include the communications test and general-purpose test markets.

Product Areas: Communications test products include testing solutions for fiber optic networks; transport networks; broadband and data networks; wireless communications; microwave networks; installation and maintenance solutions; and operations support systems, including monitoring and network management systems. General-purpose test solutions include general-purpose instruments; modular instruments and test software; digital design products; and high-frequency electronic design tools.

History and Culture

Agilent's pioneering spirit was kindled more than 60 years ago, when two engineers Bill Hewlett and Dave Packard - invented the future in their garage. In 1999, Agilent was spun off from Hewlett-Packard Company, and we have continued to support the values important to the two visionary founders.

Quality innovation is not only a passion for the Agilent engineers who design and manufacture our RF and microwave test accessories - it is a way of life. We give exceptional precision through our integrated approach to manufacturing, such as advanced fabrication facilities with state-of-the-art milling equipment and sophisticated metallurgical and planting processes. This way of life ensures you receive exceptional reliability, accuracy and repeatability in every Agilent product.

Agilent Around the World

Agilent has facilities in more than 30 countries and develops products at manufacturing sites in the U.S., China, Germany, Japan, Malaysia, Singapore, Australia and the U.K. Agilent Labs has its headquarters in Palo Alto, California, with additional sites in Fort Collins, Colorado; South Queensferry, Scotland; and Beijing, China.

Introduction and Index

Table of Contents and Index 1
New Products 2
Adapters and Connectors 3
Amplifiers 4
Attenuators 5
Attenuator/Switch Driver 6
DC Block 7
Detectors 8
Directional Couplers and Bridges 9
Frequency Meter 10
High Frequency Probe 11
Impedance Matching Adapters 12
Power Limiters 13
Power Dividers and Splitters 14
Switches 15
Terminations (Loads) 16
Impedance Test Accessories 17
Mixers 18
Network Analyzer Accessories and Cal Kits 19
Power Sensors 20
Spectrum Analyzer Accessories 21
Waveguide Accessories 22
Ordering Information and Local Assistance 23

Table of Contents

Agilent RF and Microwave Test Accessories Catalog 2006/07

1 Table of Contents and Index

2 New Products

New Products Highlights 2

3 Adapters and Connectors

General Connector Information 6
Metrology/Instrument Grade Adapters 8
General Purpose Adapters 11
1.0 mm Adapters 15
1.0 mm Connector Launch 16

Slotless Connectors 17

4 Amplifiers
Amplifiers
Amplifier Outline Drawings 25

5 Attenuators

Attenuators 32
Fixed Attenuators 34
Programmable and Manual Step Attenuators 37
Attenuator/Switch Driver Attenuator Accessories 46
$6 \begin{aligned} & \text { Attenuator/Switch Driver } \\ & \text { Attenuator/Switch Driver }\end{aligned}$

7 DC Block
DC Block

8 Detectors

Detectors 52

Planar-Doped Barrier Diode Detector 57
Low-Barrier Schottky Diode Detector 58
Detectors 59
Broadband Directional Detectors 61
9 Directional Couplers and Bridges
Directional Couplers and Bridges 64
Single- and Dual-Directional Couplers, 90° Hybrid Coupler 66
RF Bridges 73
10 Frequency Meter
Frequency Meter 76
11 High Frequency Probe
High Frequency Probe 78
12 Impedance Matching Adapters
Impedance Matching Adapters 80
13 Power Limiters
Power Limiters 82
14 Power Dividers and Splitters
Power Dividers and Splitters 86
15 Switches
Switches 90
SPDT Switch 95
Bypass Switch 103
Low Profile Multiport Switch 110
High Performance Multiport Switch 116
High Performance Transfer Switch 120
High Performance Matrix Switch 125
16 Terminations (Loads)
Fixed Loads 132
17 Impedance Test Accessories
Impedance Test Accessories 136
18 Mixers
Mixers 140
19 Network Analyzer Accessories and Cal Kits
Network Analyzer Accessories and Cal Kits 144
Coaxial Mechanical Calibration Kits 147
Waveguide Mechanical Calibration Kits 171
Coaxial Electronic Cal Kits 179
Mechanical Verification Kits 186
Scalar Network Analyzer Accessories 192
20 Power Sensors
Power Sensors 196
21 Spectrum Analyzer Accessories
Spectrum Analyzer Accessories 206
22 Waveguide Accessories
Waveguide Accessories 210
Coaxial to Waveguide Adapters 211
Detectors 212
23 Ordering Information and Local AssistanceOrdering Information218

Product Number Index

Model Number \& Description

1

11524A Adapter	$8,11-12$
11525A Adapter	$8,11-12$
11533A Adapter	$8,11-12$
11534A Adapter	$8,11-12$
11636A Power Divider	86
11636B Power Divider	86
11644A Waveguide Mechanical Calibration Kit	210
11645A Waveguide Mechanical Calibration Kit	210
11667A Power Splitter	$87-88$
11667B Power Splitter	$87-88$
11667C Power Splitter	$87-88$
11691D Directional Coupler	$67-68,72$
11692D Directional Coupler	$67-68,72$
11694A Adapter	207

11713A Attenuator/Switch Driver 39, 46, 48, 93, 121

11716A Attenuator Cable
11742A DC Block
11852B Impedance Matching Pad
11853A Adapter
11854A Adapter
11856A Adapter
11867A Power Limiter 83, 207-208
11878A Adapter
11900A Adapter
11900B Adapter
11900C Adapter
11901A Adapter
11901B Adapter
11901C Adapter
11901D Adapter
11902A Adapter
11902B Adapter
11903A Adapter
11903B Adapter 11903C Adapter 11903D Adapter 11904A Adapter 11904B Adapter 11904C Adapter 11904D Adapter 11904S Adapter 11906A Adapter 11906B Adapter 11906C Adapter 11906D Adapter 11909A Amplifier 11920A Adapter 11920B Adapter 11920C Adapter 11921E Adapter 11921F Adapter 11921G Adapter 11921H Adapter 11922A Adapter 11922B Adapter 11922C Adapter 11922D Adapter

11923A Adapter 15-16
11930A Power Limiter 82-83
11930B Power Limiter 82-83
11940A Close Field Probe 206-207
11941A Close Field Probe 206-207
11970A Mixer 141
11970K Mixer 141
119700 Mixer 141
11970 U Mixer 141
11970V Mixer 141
11970W Mixer 141
140-141
140-141
140-141
140-141
141, 206-207
8, 11-12, 14
8, 11-12, 14
11, 13
11-13
8, 11-12, 14
11-12
11-12
11-13
11-12
8, 11-12
8, 11-12
11-12
11-12
11-12
11-12
11-12
8, 11-12, 14
11-12
11-12, 14
8, 11-12
11-13
11-13
11-12
8, 11-13
11-12
11
11-13
8, 11-12
11, 14
8,11-13
11
8, 11-12, 149
11-13, 149
11-12, 149
8, 11-12, 149
11-12, 149
8, 11-12, 14
11-12, 14
11-12
11-12, 14
11-12
8, 11-12, 14
11, 13

Product Number Index

Model Number \& Description (continued)

1250-1698 Adapter	$8,11-13$
1250-1741 Adapter	11,13
1250-1743 Adapter	$8,10,158$
1250-1744 Adapter	$8,10,158$
1250-1745 Adapter	$8,10,158$
1250-1746 Adapter	$8,10,158$
1250-1747 Adapter	$8,10,158$
1250-1748 Adapter	8,10
1250-1749 Adapter	8,10
1250-1750 Adapter	$8,10,158$
1250-1772 Adapter	$8,11-12$
1250-1830 Adapter	$11-13$
1250-1857 Adapter	$11-13$
1250-1899 Adapter	$11-13$
1250-1930 Adapter	$11-13$
1250-2277 Adapter	8
16191A SMD Test Fixture	$136-137$
16192A SMD Test Fixture	$136-137$
16194A Component Test Fixture	$136-137$
16196A SMD Test Fixture	$136-137$
16196B SMD Test Fixture	137
16196C SMD Test Fixture	137
16197A SMD Test Fixture	$136-137$

3

33330B Detector
56, 58, 60
33330C Detector

4

41800A Active Probe
207
423B Detector

5

537A Frequency Meter

7

772D Directional Coupler 773D Directional Coupler 775D Directional Coupler 776D Directional Coupler 777D Directional Coupler 778D Directional Coupler

8

83006A Amplifier
83017A Amplifier 83018A Amplifier 83020A Amplifier 83050A Amplifier

66, 68, 70, 72
$66,68,70,72$
67-68, 70, 72
67-68, 70
67-68, 70, 72
67-68, 71-72

22-23, 25, 30
22-23, 25-26, 30
22-23, 25-26, 30
22-24, 27, 30
$23,25,27,30$

83051A Amplifier	23, 25, 27, 30
83059A Adapter	8,10
83059B Adapter	8,10
83059C Adapter	8,10
83059K Adapter	10, 14
8447A Amplifier	207
8447D Amplifier	206-207
8449B Amplifier	206-207
8470B Detector	56, 58-60
8471D Detector	56-57, 59-60
8471E Detector	56-57, 59
8472B Detector	56, 58-60
8473B Detector	54, 56, 58-60
8473C Detector	56, 58-59
8473D Detector	54, 56-57, 59-60
8474B Detector	56-57, 59-60, 66
8474C Detector	56-57, 59
8474E Detector	52, 56-57
8481A Power Sensor	201
8481B Power Sensor	201
8481D Power Sensor	202
8481H Power Sensor	201
8482A Power Sensor	201
8482B Power Sensor	201
8482H Power Sensor	201
8483A Power Sensor	201
8485A Power Sensor	201
8485D Power Sensor	202
8487A Power Sensor	201
8487D Power Sensor	202
84904K Programmable Attenuator	37, 41, 48
84904L Programmable Attenuator	37-38, 41
84904M Programmable Attenuator	37-38, 42
84905M Programmable Attenuator	37, 42
84906K Programmable Attenuator	37, 41, 48
84906L Programmable Attenuator	37, 41
84907K Programmable Attenuator	37, 41, 48
84907L Programmable Attenuator	37, 41
84908M Programmable Attenuator	37, 42
8490G Fixed Attenuator	3
8491A Fixed Attenuator	34-35
8491B Fixed Attenuator	34-35
8493A Fixed Attenuator	34-36
8493B Fixed Attenuator	35
8493C Fixed Attenuator	34-36
8494A Manual Attenuator	37, 40
8494B Manual Attenuator	37, 40
8494G Programmable Attenuator	37, 40, 48
8494H Programmable Attenuator	37, 40
8495A Manual Attenuator	37, 40
8495B Manual Attenuator	37, 40
8495G Programmable Attenuator	37, 40, 48
8495H Programmable Attenuator	37, 40, 45
8495K Programmable Attenuator	37, 40
8496A Manual Attenuator	37, 40
8496B Manual Attenuator	37, 40
8496G Programmable Attenuator	37, 40, 48
8496H Programmable Attenuator	37, 40
8497K Programmable Attenuator	37, 40, 48

Product Number Index

Model Number \& Description (continued)
8498A Fixed Attenuator 85024A High Frequency Probe 85029B Coaxial Mechanical Calibration Kit 85031B Coaxial Mechanical Calibration Kit 85032E Coaxial Mechanical Calibration Kit 85032F Coaxial Mechanical Calibration Kit 85033E Coaxial Mechanical Calibration Kit 85036B Coaxial Mechanical Calibration Kit 85036E Coaxial Mechanical Calibration Kit 85038A Coaxial Mechanical Calibration Kit 85038F Coaxial Mechanical Calibration Kit 85038M Coaxial Mechanical Calibration Kit 85039B Coaxial Mechanical Calibration Kit 85050B Coaxial Mechanical Calibration Kit 85050C Coaxial Mechanical Calibration Kit 85050D Coaxial Mechanical Calibration Kit 85051B Coaxial Mechanical Calibration Kit 85052B Coaxial Mechanical Calibration Kit 85052C Coaxial Mechanical Calibration Kit 85052D Coaxial Mechanical Calibration Kit 85053B Coaxial Mechanical Calibration Kit 85054B Coaxial Mechanical Calibration Kit 85054D Coaxial Mechanical Calibration Kit 85055A Coaxial Mechanical Calibration Kit 85056A Coaxial Mechanical Calibration Kit 85056D Coaxial Mechanical Calibration Kit 85056K Coaxial Mechanical Calibration Kit 85057B Coaxial Mechanical Calibration Kit 85058-60007 Adapter
85058-60008 Adapter
85058-60009 Adapter
85058B Coaxial Mechanical Calibration Kit 85058E Coaxial Mechanical Calibration Kit 85058V Coaxial Mechanical Calibration Kit 85091C Electronic Calibration Kit 85092C Electronic Calibration Kit 85093C Electronic Calibration Kit 85096C Electronic Calibration Kit 85097B Electronic Calibration Kit 85098C Electronic Calibration Kit 85099C Electronic Calibration Kit 85138A Termination 85138B Termination 86205A Directional Bridge 86207A Directional Bridge 86211A Adapter 86213A Adapter 87104A Multiport Switch 87104B Multiport Switch 87104C Multiport Switch 87106A Multiport Switch 87106B Multiport Switch 87106C Multiport Switch 87204A Multiport Switch 87204B Multiport Switch 87204C Multiport Switch
87206A Multiport Switch 87206B Multiport Switch

34-35

78, 207
19, 146, 186
17, 145, 155, 186
17, 145, 149-150
$17,145,151$
17, 145, 158
$17,145,148$
17, 145, 148
$17,145,154$
17, 145, 154
17, 145, 154
17, 145, 147
17, 145, 156, 187
17, 145, 157
17, 145, 155
19, 146, 187
$17,145,160,187$
17, 145, 161
17, 145, 159
19, 146, 187
17, 145, 152, 186
$17,145,153$
19, 146, 186
$17,145,165,188$
17, 145, 164
17, 145, 162
19, 146, 188
8, 10
8, 10
8, 10
$17,145,167,188$
$17,145,166,188$
19, 146, 188
$18,146,179,183$
$18,146,179,182,185$
18, 146, 179, 182, 185
$18,146,179,182$
$18,146,180$
18, 146, 179, 183, 185
$18,146,179,181$
133
133
73, 207
73, 207
14, 147, 149
14, 34
48, 93, 116-117
116
116
48, 93, 116
116
116
48, 116
116
116
48, 116

87206C Multiport Switch	116
87222C Transfer Switch	48, 93, 120-122, 124
87222D Transfer Switch	122
87222E Transfer Switch	122
87300B Directional Coupler	68, 71-72
87300C Directional Coupler	68, 71-72
87300D Directional Coupler	68, 71-72
87301B Directional Coupler	68, 71-72
87301C Directional Coupler	68, 71-72
87301D Directional Coupler	68, 72
87301E Directional Coupler	68, 72
87302C Power Divider	86-87
87303C Power Divider	86-87
87304C Power Divider	86-87
87405B Amplifier	22-23, 28, 207-208
87406B Matrix Switch	48, 93, 125-126, 130
87415A Amplifier	22-23, 25, 28, 30
87421A Amplifier Power Supply	22, 24, 29-30
87422A Amplifier Power Supply	22, 24, 29-30
87606B Matrix Switch	48, 125, 127, 130
8761A SPDT Switch	92, 95-96
8761B SPDT Switch	48, 95-96
8762A SPDT Switch	48, 92, 95-96
8762B SPDT Switch	95
8762C SPDT Switch	95
8763A Bypass Switch	48, 92, 103, 105
8763B Bypass Switch	103
8763C Bypass Switch	103
8764A Bypass Switch	48, 92, 103, 105
8764B Bypass Switch	103
8764C Bypass Switch	103
8765A SPDT Switch	48, 92, 95-96, 101
8765B SPDT Switch	95
8765C SPDT Switch	95
8765D SPDT Switch	95, 102
8765F SPDT Switch	95, 101-102
8766K Multiport Switch	48, 110-113, 115
8767K Multiport Switch	48, 110-113, 115
8767M Multiport Switch	48
8768K Multiport Switch	48, 110-115
8768M Multiport Switch	48
8769K Multiport Switch	48, 110-112, 114-115
8769M Multiport Switch	48
9	
909A Termination	132-133
909C Termination	132-133
909D Termination	132-133
909E Termination	132-133
909F Termination	132-133
E	
E4412A Power Sensor	200
E4413A Power Sensor	200

Product Number Index

Model Number \& Description (continued)

E9300A Power Sensor	199
E9300B Power Sensor	199
E9301B Power Sensor	199
E9301H Power Sensor	199
E9304A Power Sensor	199
E9321A Power Sensor	198
E9322A Power Sensor	198
E9323A Power Sensor	198
E9326A Power Sensor	198
E9327A Power Sensor	198

K

K11644A Waveguide Mechanical Calibration Kit K281C Waveguide Adapter

18, 145, 173 173, 211

N

N1810TL SPDT Switch	48, 92, 95-96, 99
N1810UL SPDT Switch	$48,92,95,98,102$
N1811TL Bypass Switch	$48,92,103-104,106,109$
N1812UL SPDT Switch	$48,92,103-104,107$
N1921A Power Sensor	$196-197$
N1922A Power Sensor	197
N4431B Electronic Calibration Kit	$18,146,179,184-185$
N4432A Electronic Calibration Kit	$18,146,179,184-185$
N4433A Electronic Calibration Kit	$18,146,179,184$
N4691B Electronic Calibration Kit	$18,146,179,182$
N4692A Electronic Calibration Kit	$18,146,179,183$
N4693A Electronic Calibration Kit	$18,146,179,183$
N4694A Electronic Calibration Kit	$18,146,179,184$
N4696B Electronic Calibration Kit	$18,146,179,183$
N5520A Adapter	11
N5520B Adapter	11
N5520C Adapter	2,83
N9355B Power Limiter	2,83
N9355C Power Limiter	2,83
N9356B Power Limiter	2,83
N9356C Power Limiter	4
N9397A Solid State Switch	4
N9397C Solid State Switch	

P

P11644A Waveguide Mechanical Calibration Kit P281B Waveguide Adapter 18, 145, 172 211 P281C Waveguide Adapter
08486A Power Sensor 202
Q8486D Power Sensor 202
R

0

011644A Waveguide Mechanical Calibration Kit 011645A Waveguide Mechanical Calibration Kit 0281A Waveguide Adapter 0281B Waveguide Adapter
$18,145,175,189$
19, 146, 189
141, 211
141, 211

R11644A Waveguide Mechanical Calibration Kit R11645A Waveguide Mechanical Calibration Kit R281A Waveguide AdapterR281B Waveguide AdapterR422C Waveguide Detector
R8486A Power Sensor12
R8486D Power Sensor202
U
U11644A Waveguide Mechanical Calibration Kit

18, 145, 176, 190U11645A Waveguide Mechanical Calibration KitU281A Waveguide AdapterU281B Waveguide Adapter
V
V11645A Waveguide Mechanical Calibration Kit19, 146, 190
V281A Waveguide Adapter

141, 211V281C Waveguide AdapterV281D Waveguide Adapter
W
W11644A Waveguide Mechanical Calibration Kit18, 145, 178, 191
W11645A Waveguide Mechanical Calibration Kit 19, 146, 191
W281C Waveguide Adapter 211
W281D Waveguide Adapter 211
W8486A Power Sensor 202

202
x
X11644A Waveguide Mechanical Calibration Kit 18, 145, 171
X281A Waveguide Adapter 210-211
X281C Waveguide Adapter 171, 211

18, 145, 174, 189
19, 146, 189
141, 211
141, 211
212

202

19, 146, 190
141, 211
141, 211

141, 211
211
211
-

Agilent's Web Site:

 Get News, Updated Product and Support Information, and More, 24 Hours a Day www.agilent.com/find/mta

Online Resources

- Locate product and support information with simple navigation to technical overviews, manuals, news releases, education course descriptions and schedules, and much more
- Access customer support services
- Find information on recommended replacements for discontinued products
- Place an order or check your order status in the Agilent Direct Online Store
- Subscribe to Agilent's free email update service to stay current on the latest Agilent product, support, and application information - customized for your interests and preferences

Agilent N9355/6 Power Limiters

Agilent offers a new series of industry-leading limiters, specifically designed to provide input protection for RF and microwave instruments and components used in telecommunication, component test, aerospace and defense industries. This new product includes five unique designs with different frequency ranges and limiting thresholds. The N9355/6 series of high performance limiters will safe-guard your investments from damage due to excess RF power, DC transients and electro-static-discharge.

Agilent allows you to pay only for the performance you need, with the following selections:

- Frequency range
- Connector type
- Limiting threshold

Key specifications \& features

- Maximum input power of 3 Watts
- Maximum insertion loss of 2.75 dB
- Minimum return loss of 15 dB (SWR of 1.43)
- Integrated DC block
- Bi-directional functionality

Agilent N9355B \& N9356B Power Limiters

The Agilent N9355B and N9356B limiters' operating frequency ranges from 10 MHz to 18 GHz , and offer a limiting threshold of 10 and 25 dBm respectively. Both are furnished with a pair of premium quality male and female Type- N connectors.

Agilent N9355C \& N9356C Power Limiters

The Agilent N9355C and N9356C wideband limiters operate from 10 MHz to 26.5 GHz and provide a limiting threshold of 10 and 25 dBm respectively. Both are furnished with a pair of premium quality male and female 3.5 mm connectors.

Agilent N9355F Power Limiter

The Agilent N9355F is an ultra-broadband limiter (10 MHz to 50 GHz) that comes with a limiting threshold of 10 dBm . It is furnished with a pair of premium quality male and female 2.4 mm connectors. (Will be available Spring 2006)

Agilent 8490G Coaxial Fixed Attenuators

Agilent coaxial fixed attenuators are rugged, reliable, accurate and small enough for use in both bench and in-system applications. With their broad DC to 67 GHz frequency range and reasonable cost, these attenuators are ideal for education, telecommunications, component test, aerospace and defense industries.

Key specifications

- Broadband: DC to 67 GHz
- Low Standing Wave Ratio (SWR): 1.45 up to 67 GHz
- Excellent attenuation accuracy

The Agilent 8490G precision coaxial fixed attenuators offer unparalleled performance up to 67 GHz . These attenuators come with 1.85 mm coaxial connector, exhibit excellent SWR and attenuation accuracy from DC to 67 GHz . The 8490G provides attenuation values of $3,6,10,20,30$ and 40 dB .

With high accuracy and low SWR, the attenuators are ideal for extending the dynamic range of power meters. This helps enable higher power measurements, and reduce input power levels into sensitive components and instruments. Coaxial fixed attenuators are also commonly used to reduce measurement mismatch errors. (Will be available Winter 2006)

New Products Highlights (continued)

Agilent N9397A/C Solid State Switches

Agilent RF \& microwave switches find use in a wide variety of signal routing applications for test and measurement systems.

- Selection of multiple signal sources to one output
- Selection of multiple input signals to one measurement instrument

The Agilent N9397A/C solid state switches are based on GaAs Monolithic Microwave Integrated Circuit (MMIC). The switches are designed for superior performance offering low insertion loss, excellent return loss and broad operating frequency bandwidth. This single pole double throw (SPDT) switch can be used in a variety of test systems requiring high speed RF and microwave signal routing.

Key specifications \& features

- Broadband: up to 20 GHz
- High isolation: $>90 \mathrm{~dB}$ at 20 GHz standard
- Maximum insertion loss of 5.5 dB (N9397A), 7 dB (N9397C)
- Minimum return loss of 15 dB (N9397A), 10 dB (N9397C)
- ESD or excess power protection at all RF ports
- Integrated TTL/5V CMOS compatible drive
- Single DC bias voltage
- Terminated single-pole double-throw switch
- Solder lug terminals for biasing and control

Agilent N9397A Solid State Switch

The Agilent N9397A is a 300 kHz to 8 GHz solid state switch that comes with a TTL compatible integrated driver. The built in limiters help protect the switch from damage due to excess RF power, DC transients and ESD.

Agilent N9397C Solid State Switch

The Agilent N9397C is a 10 MHz to 20 GHz version of the solid state switch with features identical to the N9397A.

Both switches are furnished with premium quality female SMA connectors. (Will be available Winter 2006)

Adapters and Connectors

General Connector Information

Metrology/Instrument Grade Adapters 8
General Purpose Adapters 11
1.0 mm Adapters 15
1.0 mm Connector Launch 16
Slotless Connectors 17

Adapters and Connectors

Overview

Many coaxial connector types are available in the RF and microwave industry, each designed for a specific purpose and application. For measurement
applications, it is important to consider the number of connects/disconnects, which impact the connector's useful life.

The frequency range of any connector is limited by the excitation of the first circular waveguide propagation mode in the coaxial structure. Decreasing the diameter of the outer conductor increases the highest usable frequency; filling the air space with dielectric lowers the highest usable frequency and increases system loss.

Performance of all connectors is affected by the quality of the interface for the mated pair. If the diameters of the inner and outer conductors vary from the nominal design, if plating quality is poor, or if contact separation at the junction is excessive, then the reflection coefficient and resistive loss at the interface will be degraded.

A few connectors, such as the APC-7, are designed to be sexless. Most are female connectors that have slotted fingers, which introduce a small inductance at the interface. The fingers accommodate tolerance variations but reduce repeatability and may ultimately break after 1000 connections. Agilent offers slotless versions of connectors in certain measuring products, which decrease inductance and increase repeatability.

The following is a brief review of common connectors used in test and measurement applications:

APC-7 (7 mm) connector

The APC-7 (Amphenol Precision
Connector- 7 mm) offers the lowest reflection coefficient and most repeatable measurement of all 18 GHz connectors. Development of the connector was a joint effort between HP and Amphenol, which began in the 1960s. This is a sexless design and is the preferred connector for the most demanding applications, notably metrology and calibration.

Type-N connector

The type-N (Navy) 50Ω connector was designed in the 1940s for military systems operating below 4 GHz . In the 1960s, improvements pushed performance to 12 GHz and later, mode-free, to 18 GHz . Agilent offers some products with slotless type-N center conductors for improved performance to 18 GHz . Agilent type-N connectors are completely compatible with MIL-C-39012. Certain 75Ω products use a type-N design with smaller center conductor diameters, and thus are not compatible with 50Ω connectors.

SMA connector

The SMA (Subminiature A) connector was designed by Bendix Scintilla Corporation and is one of the most commonly used $\mathrm{RF} /$ microwave connectors. It is intended for use on semirigid cables and in components that are connected infrequently. Most SMA connectors have higher reflection coefficients than other connectors available for use to 24 GHz because of the difficulty to anchor the dielectric support.

3.5 mm connector

The 3.5 mm connector was primarily developed at Hewlett Packard - now Agilent Technologies, with early manufacturing at Amphenol. Its design strategy focused on highly-rugged physical interfaces that would mate with popular SMA dimensions, allowing thousands of repeatable connections. It is mode-free to 34 GHz .

1.0 mm launch

The launch adapter has a 1.0 mm female connector on one end and a glass to metal seal interface on the other end. This is for transition of ultra-high frequency (up to 110 GHz) signals from coax into a microstrip package or onto a circuit board.

2.92 mm connector

The 2.92 mm connector mates with SMA and 3.5 mm connectors and offers mode-free performance to 40 GHz .

2.4 mm connector

The 2.4 mm connector was developed by HP, Amphenol, and M/A-COM for use to 50 GHz . This design eliminates the fragility of the SMA and 2.92 mm connectors by increasing the outer wall thickness and strengthening the female fingers. It can mate with SMA, 3.5 mm and 2.92 mm with the use of precision adapters. The 2.4 mm product is offered in three quality grades; general purpose, instrument, and metrology. General purpose grade is intended for economy use on components, cables, and microstrip, where limited connections and low repeatability is acceptable. Instrument grade is best suited for measurement applications where repeatability and long life are primary considerations. Metrology grade is best suited for calibration applications where the highest performance and repeatability are required.

1.85 mm Connector

The 1.85 mm connector was developed in the mid-1980s by Hewlett Packard - now Agilent Technologies - for mode-free performance to 65 GHz . HP offered their design as public domain in 1988 to encourage standardization of connector types; a few devices are available from various manufacturers for research work. The 1.85 mm connector mates with the 2.4 mm connector and has the same ruggedness. In recent years, the 1.85 mm connector has been optimized to operate mode-free to 67 GHz . Many experts have considered this connector to be the smallest possible coaxial connector for common usage up to 67 GHz .

1.0 mm connector

Designed to support transmission all the way to 110 GHz , this 1.0 mm connector is a significant achievement in precision manufacturing resulting in a reliable and flexible interconnect.

BNC connector

The BNC (Bayonet Navy Connector) was designed for military use and has gained wide acceptance in video and RF applications to 2 GHz . Above 4 GHz , the slots may radiate signals. Both 50Ω and 75Ω versions are available. A threaded version (TNC) helps resolve leakage for common applications up to 12 GHz .

SMC connector

The SMC (Subminiature C) is much smaller than an SMA connector, making it suitable for some applications with size constraints. It is often used up to 7 GHz where low leakage and few connections are required.

Connector care and signal performance

While many Agilent RF/microwave connectors have been designed for rugged mechanical interfaces, the user must be aware that cleanliness of the surfaces and care in applying torque to the connector nut are crucial to long life and full signal performance. Table 1 shows the recommended torque for various connector types.

Table 1. Recommended torque values for connectors

	Torque lb-inch (N-cm)
Connector type	$12(136)$
Precision $\mathbf{7} \mathbf{~ m m}$	$8(90)$
Precision $\mathbf{3 . 5} \mathbf{~ m m}$	$5(56)$ Use the SMA torque value to connect male SMA connectors to female precision 3.5 mm connectors. Use the 3.5 mm torque value to connect male 3.5 mm connectors to the female SMA (8 lb-inch).
SMA	$8(90)$
Precision $\mathbf{2 . 4} \mathbf{~ m m}$	$8(90)$
Precision $\mathbf{1 . 8 5 \mathbf { m m }}$	$4(45)$
Precision $\mathbf{1 . 0} \mathbf{~ m m}$	Type-N connectors may be connected finger tight. If a torque
Type-N	wrench is used, 12 lb-inch (136 N-cm) is recommended.

Adapters and Connectors

Metrology/Instrument Grade Adapters

Metrology/instrument grade adapter selection guide

Connector type	1.0 mm	1.85 mm	2.4 mm	2.92 mm	3.5 mm	7 mm	Type-N (50 Ω)	Type-N (75 Ω)
1.0 mm	11920A, B, C	11921E, F, G, H	11922A, B, C, D					
1.85 mm		$\begin{aligned} & 85058-60007 \\ & 85058-60008 \\ & 85058-60009 \end{aligned}$						
2.4 mm			11900A, B , C	$\begin{aligned} & 11904 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \\ & 11904 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 11901 \text { A, B, C, D } \\ & 1250-2277 \end{aligned}$	11902A, B	11903A, B, C, D	
3.5 mm					$\begin{aligned} & 83059 A, B, C \\ & 1250-1748 \\ & 1250-1749 \end{aligned}$	$\begin{aligned} & 1250-1746 \\ & 1250-1747 \end{aligned}$	$\begin{aligned} & 1250-1743 \\ & 1250-1744 \\ & 1250-1745 \\ & 1250-1750 \end{aligned}$	
Type $\mathrm{N}(50 \Omega)$								$\begin{aligned} & \text { 11852B } \\ & \text { 11852B Option } 004 \end{aligned}$

Typical configuration

Agilent 11900A Agilent 11901A Agilent 11904A
Agilent 83059A
Agilent 1250-1159
Agilent 1250-1748 85058-60007

||||||r

Agilent 11900B
Agilent 11901B
Agilent 11904B
Agilent 83059B
Agilent 1250-1158
Agilent 1250-1749 85058-60008

Agilent 11900C Agilent 11901C Agilent 11901D Agilent 11904C Agilent 11904D Agilent 83059C Agilent 1250-1462 85058-60009

Agilent 11534A
Agilent 1250-1747

Agilent 11903A Agilent 1250-1636 Agilent 1250-1743

Agilent 11903D Agilent 1250-1250 Agilent 1250-1744

Agilent 11903C Agilent 1250-1562 Agilent 1250-1750

Agilent 11903B
Agilent 1250-1745
Agilent 1250-1772

Agilent 1250-0778 Agilent 1250-1475 Agilent 1250-1528

Agilent 1250-0777 Agilent 1250-1472 Agilent 1250-1529

Agilent 11852B Agilent 11852B Option 004 Agilent 1250-0597

Agilent 1250-1249

Agilent 1250-1397

Agilent 1250-0176

Metrology grade adapters ${ }^{1}$

Agilent model	Type ${ }^{2}$	Frequency range	Return loss	Repeatability ${ }^{3}$ (min)	Overall length (nom) mm (in)	Ref. plane to ref. plane length (nom) mm (in)	Diameter (nom) mm (in)
11900A	$2.4 \mathrm{~mm}(\mathrm{~m}), 2.4 \mathrm{~mm}(\mathrm{~m})$	DC to 50 GHz	$>26 \mathrm{~dB}$	$-44 \mathrm{~dB}$	16.2 (0.64)	12.4 (0.49)	9 (0.35)
11900B	2.4 mm (f), 2.4 mm (f)	DC to 50 GHz	$>26 \mathrm{~dB}$	$-44 \mathrm{~dB}$	18.5 (0.73)	12.4 (0.49)	8 (0.31)
11900C	$2.4 \mathrm{~mm}(\mathrm{~m}), 2.4 \mathrm{~mm}(\mathrm{f})$	DC to 50 GHz	$>26 \mathrm{~dB}$	-44 dB	17.4 (0.69)	12.4 (0.49)	9 (0.35)
11901A	$2.4 \mathrm{~mm}(\mathrm{~m}), 3.5 \mathrm{~mm}(\mathrm{~m})$	DC to 26.5 GHz	$>26 \mathrm{~dB}$	-54 dB	20.9 (0.82)	16.1 (0.63)	9 (0.35)
11901B	2.4 mm (f), 3.5 mm (f)	DC to 26.5 GHz	$>32 \mathrm{~dB}$	-54 dB	21.1 (0.83)	16.1 (0.63)	8 (0.31)
11901C	$2.4 \mathrm{~mm}(\mathrm{~m}), 3.5 \mathrm{~mm}(\mathrm{f})$	DC to 26.5 GHz	$>32 \mathrm{~dB}$	-54 dB	20.2 (0.80)	16.1 (0.63)	9 (0.35)
11901D	2.4 mm (f), 3.5 mm (m)	DC to 26.5 GHz	$>32 \mathrm{~dB}$	-54 dB	21.8 (0.86)	16.1 (0.63)	9 (0.35)
11903A	2.4 mm (m), Type-N (m)	DC to 18 GHz	$>28 \mathrm{~dB}$	-48 dB	49.1 (1.93)	46.1 (1.82)	22 (0.86)
11903B	2.4 mm (f), Type-N (f)	DC to 18 GHz	$>28 \mathrm{~dB}$	$-48 \mathrm{~dB}$	58.3 (2.30)	46.1 (1.82)	15.7 (0.62)
11903C	2.4 mm (m), Type-N (f)	DC to 18 GHz	$>28 \mathrm{~dB}$	$-48 \mathrm{~dB}$	57.4 (2.26)	46.1 (1.82)	15.7 (0.62)
11903D	2.4 mm (f), Type-N (m)	DC to 18 GHz	$>28 \mathrm{~dB}$	$-48 \mathrm{~dB}$	50.0 (1.97)	46.1 (1.82)	22 (0.86)
11904A	$2.4 \mathrm{~mm}(\mathrm{~m}), 2.92 \mathrm{~mm}(\mathrm{~m})^{4}$	DC to 40 GHz	$>24 \mathrm{~dB}$	$-40 \mathrm{~dB}$	16.4 (0.64)	11.3 (0.45)	9 (0.35)
11904B	2.4 mm (f), 2.92 mm (f)	DC to 40 GHz	$>24 \mathrm{~dB}$	$-40 \mathrm{~dB}$	16.3 (0.64)	11.3 (0.45)	8 (0.31)
11904C	2.4 mm (m), 2.92 mm (f)	DC to 40 GHz	$>24 \mathrm{~dB}$	$-40 \mathrm{~dB}$	13.3 (0.52)	11.3 (0.45)	9 (0.35)
11904D	$2.4 \mathrm{~mm}(\mathrm{f}), 2.92 \mathrm{~mm}(\mathrm{~m})$	DC to 40 GHz	$>24 \mathrm{~dB}$	$-40 \mathrm{~dB}$	17.0 (0.67)	11.3 (0.45)	9 (0.35)
$11904 S$	2.4 mm to 2.92 mm matched set						

${ }^{1}$ Agilent 1190x adapters are phase matched within each family.
${ }^{2} f=j a c k, m=$ plug.
${ }^{3}$ Repeatability $=-20 \log |\Delta r|$, where $|\Delta r|=\left|r m_{1}-r m_{2}\right|$.
${ }^{4} 2.92 \mathrm{~mm}$ is compatible with 3.5 mm .

Typical precision adapter performance
SWR

Adapters and Connectors

Metrology/Instrument Grade Adapters (continued)

Instrument grade adapters

Agilent model	Type ${ }^{1}$	Frequency range	Return loss (typ)	Overall length (nom) mm (in)	Ref. plane to ref. plane length (nom) mm (in)	Diameter (nom) mm (in)
83059A	$3.5 \mathrm{~mm}(\mathrm{~m}), 3.5 \mathrm{~mm}(\mathrm{~m})$	DC to 26.5 GHz	32 dB	28.4 (1.12)	23.1 (0.91)	10 (0.39)
83059B	3.5 mm (f), 3.5 mm (f)	DC to 26.5 GHz	32 dB	26.9 (1.06)	23.1 (0.91)	10 (0.39)
83059C	$3.5 \mathrm{~mm}(\mathrm{~m}), 3.5 \mathrm{~mm}$ (f)	DC to 26.5 GHz	32 dB	25.7 (1.01)	23.1 (0.91)	10 (0.39)
83059K	Set of Agilent 83059A, B, C in wood case					
1250-1743	$3.5 \mathrm{~mm}(\mathrm{~m})$, Type-N (m)	DC to 18 GHz	28 dB	44.2 (1.74)	40.8 (1.61)	20.8 (0.82)
1250-1744	$3.5 \mathrm{~mm}(\mathrm{f})$, Type-N (m)	DC to 18 GHz	28 dB	43.6 (1.72)	40.8 (1.61)	20.8 (0.82)
1250-1745	$3.5 \mathrm{~mm}(\mathrm{f})$, Type-N (f)	DC to 18 GHz	28 dB	42.7 (1.68)	31.6 (1.24)	15.8 (0.62)
1250-1746	3.5 mm (m), APC-7	DC to 18 GHz	34 dB	$37.9(1.49)^{2}$	33.1 (1.30)	22.0 (0.87)
1250-1747	3.5 mm (f), APC-7	DC to 18 GHz	28 dB	$37.0(1.46)^{2}$	33.1 (1.30)	22.0 (0.87)
1250-1748	$3.5 \mathrm{~mm}(\mathrm{~m}), 3.5 \mathrm{~mm}(\mathrm{~m})$	DC to 26.5 GHz	25 dB	45.1 (1.78)	39.6 (1.56)	9.2 (0.36)
1250-1749	3.5 mm (f), 3.5 mm (f)	DC to 34 GHz	23 dB	43.5 (1.71)	39.6 (1.56)	9.2 (0.36)
1250-1750	$3.5 \mathrm{~mm}(\mathrm{~m})$, Type-N (f)	DC to 18 GHz	24 dB	43.4 (1.71)	31.6 (1.24)	15.8 (0.62)
85058-60007	$1.85 \mathrm{~mm}(\mathrm{~m}), 1.85 \mathrm{~mm}(\mathrm{~m})^{3}$	DC to 65 GHz	22 dB	29.5 (1.16)	25.2 (0.99)	9.1 (0.36)
85058-60008	1.85 mm (f), 1.85 mm (f) ${ }^{3}$	DC to 65 GHz	22 dB	31.3 (1.23)	25.2 (0.99)	9.1 (0.36)
85058-60009	$1.85 \mathrm{~mm}(\mathrm{~m}), 1.85 \mathrm{~mm}(\mathrm{f}){ }^{3}$	DC to 65 GHz	22 dB	30.4 (1.20)	25.2 (0.99)	9.1 (0.36)
11852B ${ }^{4}$	50Ω Type-N (f), 75Ω Type-N (m)	DC to 3 GHz	30 dB	60.1 (2.37)	50.2 (1.98)	22 (0.87)
11852B Option $004{ }^{4}$	50Ω Type-N (m), 75 Ω Type-N (f)	DC to 3 GHz	30 dB	60.1 (2.37)	50.2 (1.98)	22 (0.87)

${ }^{1} f=j a c k, m=$ plug.
${ }^{2}$ Overall length with threaded coupling sleeve extended.
${ }^{3} 1.85 \mathrm{~mm}$ is compatible with 2.4 mm . To adapt 1.85 mm to other connector types, use Agilent 1190x series adapters.
${ }^{4}$ Insertion loss is 5.7 dB typical.

Selected instrument grade adapters

1 Agilent 1250-1744 Adapter, 3.5 mm (f) to Type-N (m), DC to 18 GHz
2 Agilent 1250-1743 Adapter, $3.5 \mathrm{~mm}(\mathrm{~m})$ to Type-N (m), DC to 18 GHz
3 Agilent 1250-1747 SMA (f) to APC-7 Adapter
4 Agilent 1250-1746 SMA (m) to APC-7 Adapter
5 Agilent 1250-1750 $3.5 \mathrm{~mm}(\mathrm{~m})$ to Type-N (f)
6 Agilent 1250-1745 3.5 mm (f) to Type-N (f)
7 Agilent 1250-1748 $3.5 \mathrm{~mm}(\mathrm{~m})$ to $3.5 \mathrm{~mm}(\mathrm{~m})$ Instrument-Grade Adapter
8 Agilent 1250-1749 3.5 mm (f) to 3.5 mm (f)

Adapters and Connectors

General Purpose Adapters

General purpose grade adapter selection guide

Connector type	1.85 mm	SMA	SMA Tee	SMB	SMC	Type-N (50Ω)	Type-N (75 Ω)	BNC (75 Ω)	Type-N Tee	BNC (50Ω)
1.85 mm	N5520A, B									
SMA		$\begin{aligned} & 1250-1158 \\ & 1250-1159 \\ & 1250-1462 \\ & 1250-1694 \end{aligned}$		1250-0674	1250-0675					$\begin{aligned} & 1250-0562 \\ & 1250-1200 \end{aligned}$
Right Angle, SMA		$\begin{aligned} & 1250-1249 \\ & 1250-1397 \\ & 1250-1741 \end{aligned}$								
SMA Tee			1250-1698							
SMB		1250-0674		$\begin{aligned} & 1250-0672 \\ & 1250-1391 \end{aligned}$		1250-0671				1250-1857
SMC		1250-0675			$\begin{aligned} & 1250-0827 \\ & 1250-0837 \\ & 1250-0838 \\ & 1250-1113 \end{aligned}$	1250-1152				
7 mm		$\begin{aligned} & \hline 11533 \mathrm{~A} \\ & 11534 \mathrm{~A} \\ & 1250-1468 \\ & \hline \end{aligned}$				$\begin{aligned} & 11524 \mathrm{~A} \\ & 11525 \mathrm{~A} \end{aligned}$				
BNC (50 Ω)		$\begin{aligned} & 1250-1200 \\ & 1250-0562 \end{aligned}$		$\begin{aligned} & 1250-1236 \\ & 1250-1237 \\ & 1250-1899 \end{aligned}$	$\begin{aligned} & 1250-0831 \\ & 1250-0832 \end{aligned}$					
Type-N (50 Ω)		$\begin{aligned} & 1250-1250 \\ & 1250-1404 \\ & 1250-1636 \\ & 1250-1772 \end{aligned}$			1250-1152	$\begin{aligned} & 1250-1529 \\ & 1250-0777 \\ & 1250-0778 \\ & 1250-1472 \\ & 1250-1475 \end{aligned}$	$1250-0597$			$\begin{aligned} & 1250-1473 \\ & 1250-1474 \\ & 1250-1476 \\ & 1250-1477 \end{aligned}$
Type-N (75 Ω)								$\begin{aligned} & 1250-1533 \\ & 1250-1534 \\ & 1250-1535 \\ & 1250-1536 \end{aligned}$		
Right Angle, Type-N (50Ω)						1250-0176				
Type-N Tee									$\begin{aligned} & 1250-0559 \\ & 1250-0846 \end{aligned}$	
BNC (75 Ω)								$\begin{aligned} & 1250-1286 \\ & 1250-1287 \end{aligned}$		
BNC Trixial										$\begin{aligned} & 1250-0595 \\ & 1250-1830 \\ & 1250-1930 \end{aligned}$

Adapters and Connectors

General purpose grade adapters

Adapters APC-7 ${ }^{1}$	
11524A	APC-7 to Type-N (f)
11525A	APC-7 to Type-N (m)
11533A	APC-7 to SMA (m)
11534A	APC-7 to SMA (f)
Adapters Type-N, standard 50Ω	
	SWR <1.03 to 1.3 GHz
1250-1472	Type-N (f) to Type-N (f)
1250-1473	Type-N (m) to BNC (m)
1250-1474	Type-N (f) to BNC (f)
1250-1475	Type-N (m) to Type-N (m)
1250-1476	Type-N (m) to BNC (f)
1250-1477	Type-N (f) to BNC (m)
Adapters SMA	
1250-1158	SMA (f) to SMA (f)
1250-1159	SMA (m) to SMA (m)
1250-1249	SMA right angle (m) (f)
1250-1397	SMA right angle (m) (m)
1250-1462	SMA (m) to SMA (f)
1250-1698	SMA tee (m) (f) (f)
1250-1200	BNC (f) to SMA
E9633A	SMA (m) to BNC (m)
1250-1899	BNC (f) to SMB (m)
E9634A	SMA (f) to BNC (m)

Adapters Type-N, standard 50Ω

$1250-0077$	Type-N (f) to BNC (m)
$1250-0082$	Type-N (m) to BNC (m)
$1250-0176$	Type-N (m) to Type-N (f) right angle
	(use below 12 GHz)
$1250-0559$	Type-N tee, (m) (f) (f)
$1250-0777$	Type-N (f) to Type-N (f)
$1250-0778$	Type-N (m) to Type-N (m)
$1250-0780$	Type-N (m) to BNC (f)
$1250-0846$	Type-N tee (f) (f) (f)
$1250-1250$	Type-N (m) to SMA (f)
$1250-1562$	Type-N (f) to SMA (m)
$1250-1636$	Type-N (m) to SMA (m)
$1250-1772$	Type-N (f) to SMA (f)

Adapters Type-N, standard $75 \Omega^{2}$

$1250-0597$	Type-N (m) (50 Ω) to Type-N (f) (75 Ω)
$1250-1528$	Type-N (m) to Type-N (m)
$1250-1529$	Type-N (f) to Type-N (f)
$1250-1533$	Type-N (m) to BNC (m)
$1250-1534$	Type-N (f) to BNC (m)
$1250-1535$	Type-N (m) to BNC (f)
$1250-1536$	Type-N (f) to BNC (f)

Adapters type BNC, standard 50Ω

$1250-0076$	Right angle BNC (UG-306/D)
$1250-0080$	BNC (f) to BNC (f) (UG-914/U
$1250-0216$	BNC (m) to BNC (m)
$1250-0556$	BNC (f) to WECO video (m)
$1250-0595$	BNC (f) to BNC triaxial (m)
$1250-0781$	BNC tee (m) (f) (f)
$1250-1830$	BNC (f) to BNC triaxial (f)
$1250-1930$	BNC (m) to BNC triaxial (f)

Adapters BNC, standard $75 \Omega^{3}$

1250-1286	Right angle BNC $(\mathrm{m})(\mathrm{f})$
E9628A	BNC (f) to BNC f$)$
1250-1288	BNC (m) to BNC (m)

Adapters SMB, SMC ${ }^{4}$

$1250-0670$	SMC tee (m) (m) (m)
$1250-0671$	SMB (m) to Type-N (m)
$1250-0672$	SMB (f) to SMB (f)
$1250-0674$	SMB (m) to SMA (f)
$1250-0675$	SMC (m) to SMA (f)
$1250-0827$	SMC (m) to SMC (m)
$1250-0831$	SMC (m) to BNC (m)

1250-0832 SMC (f) to BNC (f)
1250-0837 \quad SMC tee $(\mathrm{m})(\mathrm{m})(\mathrm{m})$
1250-0838 \quad SMC tee (f) (m) (m)
1250-1023 SMC (m) to Type-N (m)
1250-1113 SMC (f) to SMC (f)
1250-1152 SMC (f) to Type-N (m)
1250-1236 SMB (f) to BNC (f)
1250-1237 SMB (m) to BNC (f)
1250-1391 \quad SMB tee (f) (m) (m)
1250-1857 \quad SMB (f) to BNC (m)

[^0]

1 Agilent 1250-1200 Adapter, BNC (f) to SMA (m)
2 Agilent 1250-1899 Adapter, BNC (f) to SMB (m)
3 Agilent 1250-0556 Adapter, BNC (f) to WECO Video (m)
4 Agilent 1250-1477 Standard, N (f) to BNC (m), Precision 50Ω
5 Agilent 1250-1473 Standard, N (m) to BNC (m), Precision 50Ω Adapter
6 Agilent 1250-0595 Adapter, BNC (f) to BNC Triaxial (m)
7 Agilent 1250-1930 Adapter, BNC (m) to BNC Triaxial (f)
8 Agilent 1250-1830 Adapter, BNC (f) to BNC Triaxial (f)
9 Agilent 1250-1857 Adapter, SMB (f) to BNC (m)
10 Agilent 1250-0562 Adapter, BNC (f) to SMA (f)
11 Agilent 1250-1236 Adapter, SMB (f) to BNC (f)

1 Agilent 1250-1391 Adapter, SMB Tee (f) (m) (m)
2 Agilent 1250-1741 SMA (f) to SMA (m) Right Angle Adapter
3 Agilent 1250-1698 Adapter, SMA Tee (m) (f) (f)
4 Agilent 1250-1249 Adapter, SMA Right Angle (m) (f)
5 Agilent 1250-1462 Adapter, SMA (m) to SMA (f)
6 Agilent 1250-0674 Adapter, SMB (m) to SMA (f)
7 Agilent 1250-1694 SMA (m) to SMA (f) Adapter
8 Agilent 1250-1158 SMA (f) to SMA (f) Adapter

Adapters and Connectors

1 Agilent 1250-0597 Adapter, Type-N (m) 50Ω to Type-N (f) 75Ω
2 Agilent 1250-1778 Standard $N(m)$ to Standard $N(m)$ Adapter, 50Ω Agilent 1250-1529 Standard N (f) to Standard N (f) Adapter, 75Ω Agilent 1250-1152 Adapter, SMC (f) to Type-N (m)
Agilent 1250-1404 Adapter, SMA (f) to Type-N (f)
Agilent 1250-1023 Adapter, SMC (m) to Type-N (m)
7 Agilent 1250-1535 Adapter, N (m) to BNC (f) Adapter, 75Ω
8 Agilent 1250-1533 Standard $N(m)$ to BNC (m) Adapter, 75Ω
9 Agilent 1250-1250 Adapter, Type-N (m) to SMA (f), 50Ω
10 Agilent 1250-0846 Tee Adapter, Standard N (f) (f) (f)
11 Agilent 1250-1636 Adapter, Type-N (m) to SMA (m) 50Ω
12 Agilent 1250-0559 Tee Adapter, Standard N (m) (f) (f)
13 Agilent 1250-0176 Right Angle Standard N (m) to Standard N (f)

Adapter kit selection guide

Connector type	3.5 mm	7 mm	Type-N (50 Ω)	Type-N (75 $\mathrm{I}^{\text {) }}$	BNC (75 Ω)	Type-F (75) $^{\text {) }}$	BNC (50 Ω)	7-16
3.5 mm	83059K		11878A					
Type-N (50 Ω)			11853A				11854A	
Type-N (75 Ω)				$\begin{aligned} & 11855 A \\ & 86213 A \end{aligned}$	11856A	86211A		
7-16	11906D	11906C	11906B					11906A

1.0 mm Adapters

- Increased measurement versatility
- Ease-of-use for on-wafer and coaxial measurements

Increased measurement versatility

For Microwave and RF engineers making coaxial measurements at 50,67 or 110 GHz , the Agilent $11920 / 1 / 2$ series 1.0 mm adapters provide an easy way of measuring coaxial devices at high frequencies. The Agilent 11920 A/B/C 1.0 mm to 1.0 mm are designed for the measurement of components with 50Ω 1.0 mm connectors. The Agilent $11921 \mathrm{~A} / \mathrm{B} / \mathrm{C} / \mathrm{D}, 1.0 \mathrm{~mm}$ to 1.85 mm , and the Agilent $11922 \mathrm{~A} / \mathrm{B} / \mathrm{C} / \mathrm{D}, 1.0 \mathrm{~mm}$ to 2.4 mm , are intended to be used as general purpose adapters that are versatile and interchangeable. These adapters increase the capability needed to use test systems, such as the Agilent N5250A.

Ease-of-use for on-wafer and coaxial measurements

Each connector has an air dielectric interface and a center conductor that is supported by a low-loss plastic bead. Available with male and female connectors, these Agilent 1.0 mm adapters provide ease-of-use for microwave engineers who need to connect their test systems. The Agilent 1.0 mm adapters allow engineers to make fewer connections directly to their test port while maintaining the accuracy of their test system.

1.0 mm Adapters

Agilent model	$\begin{aligned} & 11920 \mathrm{~A} \\ & 11920 \mathrm{~B} \\ & 11920 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { 11921E } \\ & \text { 11921F } \\ & \text { 11921G } \\ & \text { 11921H } \end{aligned}$	$\begin{aligned} & \text { 11922A } \\ & \text { 11922B } \\ & \text { 11922C } \\ & \text { 11922D } \end{aligned}$	11923A
Features	$<$	Excellent accuracy and measurement versatility		\longrightarrow
Frequency range	DC to 110 GHz	DC to 67 GHz	DC to 50 GHz	DC to 110 GHz
Frequency response Insertion loss Return loss	$\begin{aligned} & -0.5 \mathrm{~dB} \\ & -24 \mathrm{~dB} \text { DC to } 20 \mathrm{GHz} \\ & -20 \mathrm{~dB} 20 \text { to } 50 \mathrm{GHz} \\ & -18 \mathrm{~dB} 50 \text { to } 75 \mathrm{GHz} \\ & -14 \mathrm{~dB} 75 \text { to } 110 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & -0.5 \mathrm{~dB} \\ & -20 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -0.7 \mathrm{~dB} \\ & -20 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -1.0 \mathrm{~dB} \\ & -16 \mathrm{~dB} \end{aligned}$
Input power Max CW power	10 W	10 W	10 W	6 W
Repeatability ${ }^{1}$	$-35 \mathrm{~dB}$	$\begin{aligned} & -35 \mathrm{~dB} 1.0 \mathrm{~mm} \\ & -40 \mathrm{~dB} 1.85 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & -35 \mathrm{~dB} 1.0 \mathrm{~mm} \\ & -44 \mathrm{~dB} 2.4 \mathrm{~mm} \end{aligned}$	
RF connectors A, E: B, F: C, G: D, H:	```1 mm (m) to 1 mm (m) 1 mm (f) to 1 mm (f) 1 mm (m) to 1 mm (f)```	$\begin{aligned} & 1 \mathrm{~mm}(\mathrm{~m}) \text { to } 1.85 \mathrm{~mm}(\mathrm{~m}) \\ & 1 \mathrm{~mm}(\mathrm{f}) \text { to } 1.85 \mathrm{~mm} \text { (f) } \\ & 1 \mathrm{~mm}(\mathrm{~m}) \text { to } 1.85 \mathrm{~mm}(\mathrm{f}) \\ & 1 \mathrm{~mm}(\mathrm{f}) \text { to } 1.85 \mathrm{~mm}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1 \mathrm{~mm}(\mathrm{~m}) \text { to } 2.4 \mathrm{~mm}(\mathrm{~m}) \\ & 1 \mathrm{~mm}(\mathrm{f}) \text { to } 2.4 \mathrm{~mm}(\mathrm{f}) \\ & 1 \mathrm{~mm}(\mathrm{~m}) \text { to } 2.4 \mathrm{~mm}(\mathrm{f}) \\ & 1 \mathrm{~mm}(\mathrm{f}) \text { to } 2.4 \mathrm{~mm}(\mathrm{~m}) \end{aligned}$	$1 \mathrm{~mm}(\mathrm{f})$ to circuit card launch

[^1]
Adapters and Connectors

Flexible microcircuit packaging

The Agilent 11923A 1.0 mm female connector launch threads into a package or fixture housing to transition a microwave circuit from microstrip to coaxial connector.
The Agilent 11923A connector launch is intended for use with the N5250A and other test systems up to 110 GHz . The Agilent 11923A 1.0 mm female connector has an air dielectric interface and center conductor that is supported by a low-loss plastic bead on one end and a glass-tometal seal interface on the other end. This interface consists of a 0.162 mm diameter pin that extends inside the package or fixture for connection onto a microwave circuit.

The Agilent 11923A is pre-assembled and supplied with a machining detail for mounting the launch and assembly instructions. The user is responsible for making the connection onto the circuit card, machining the package, and installing the connector. If a quasi-hermetic seal is desired, epoxy may be applied to threads of the launch prior to installation. The procedure describing the necessary dimensions for the package and installation is provided with the launch assembly.

Specifications

Specifications describe the instrument's warranted performance over the temperature range 0 to $55^{\circ} \mathrm{C}$ (except where noted). Supplemental characteristics are intended to provide information for applying the instrument by giving typical but nonwarranted performance parameters. These are noted as "typical", "nominal", or "approximate".

1.0 mm (f) connector launch

Model number	Coax connector type	Frequency (GHz)	Insertion loss
11923A	(f) to circuit card launch	DC to 110	better than: -1.0 dB

Supplemental characteristics

Model number	Return loss	Max CW power
$\mathbf{1 1 9 2 3 A}$	-16 dB	better than: 6 W

Environmental specifications

	Operating	Non-operating
Temperature	0° to $55^{\circ} \mathrm{C}$	-40° to $75^{\circ} \mathrm{C}$
Altitude	<15.000 meters $(<50.000$ feet $)$	<15.000 meters $(<50.000$ feet $)$

Note: The operating temperature is a critical factor in the performance during measurements and between calibrations. Storage or operation within an environment other than that specified above may cause damage to the product and void the warranty.

Non-operating environmental specifications apply to storage and shipment. Products should be stored in a clean, dry environment. Operating environmental specifications apply when the product is in use. Products should not be operated in a condensing environment.

Key literature

Agilent 11923A Operating and Service Guide 11923-90001

Adapters and Connectors

Slotless connectors

Precision Slotless sockets (female connectors) were developed by Agilent to provide the most accurate traceable calibration possible. Connectors that use precision slotless sockets are metrology grade connectors. The outside diameter of the socket does not change when mated with pins of varying diameters, within the tolerance requirements of a metrology grade connector.

Conventional slotted sockets are flared by the inserted pin. Because physical dimensions determine connector impedance, electrical characteristics of the connector pair are dependent upon the mechanical dimensions of the pin. While connectors are used
in pairs, their pin and socket halves are always specified separately as part of a standard, instrument, or device under test. Because the slotted socket's outer diameter changes with different pin diameters, it is very difficult to make precision measurements with the conventional slotted socket connector. The measurement of the device is a function of its connector.

Slotless sockets are used in the following calibration kits:

Agilent 85052B/C/D
Agilent 85054B/D
Agilent 85056A/D

Coaxial mechanical calibration kits

Connector	Frequency range	Type	VNA calibration accuracy	Agilent model	Available options
Type-F (75 ${ }^{\text {) }}$	DC to 3 GHz	Economy	5\%-1\%	85039B	1A7, A6J, UK6, 00M, 00F, MOF
Type-N (75 ${ }^{\text {) }}$	DC to 3 GHz	Economy	5\%-1\%	85036E	1A7, A6J, UK6
Type-N (75 ${ }^{\text {(}}$)	DC to 3 GHz	Standard	5\%-1\%	85036B	1A7, A6J, UK6
Type-N (50 Ω)	DC to 6 GHz	Economy	5\%-1\%	85032E	1A7, A6J, UK6
Type-N (50 ${ }^{\text {(}}$)	DC to 9 GHz	Standard	5\%-1\%	85032F	1A7, A6J, UK6, 100, 200, 300, 500*
Type-N (50 Ω)	DC to 18 GHz	Economy	5\%-1\%	85054D	1A7, A6J, UK6
Type-N (50 ${ }^{\text {) }}$	DC to 18 GHz	Standard	2\% - 0.3\%	85054B	1A7, A6J, UK6
7-16	DC to 7.5 GHz	Standard	2\%	85038A	UK6
7-16 (female)	DC to 7.5 GHz	Standard	2\%	85038F	UK6
7-16 (male)	DC to 7.5 GHz	Standard	2\%	85038M	UK6
7 mm	DC to 6 GHz	Economy	2\% - 0.3\%	85031B	1A7, A6J, UK6
7 mm	DC to 18 GHz	Economy	5\%-1\%	85050D	1A7, A6J, UK6
7 mm	DC to 18 GHz	Standard	2\% - 0.05\%	85050B	1A7, A6J, UK6
7 mm	DC to 18 GHz	Precision	0.3\% - 0.05\%	85050C	1A7, A6J, UK6
3.5 mm	DC to 9 GHz	Standard	5\%-1\%	85033E	1A7, A6J, UK6, 100, 200, 300, 400, 500
3.5 mm	DC to 26.5 GHz	Economy	5\%-1\%	85052D	1A7, A6J, UK6
3.5 mm	DC to 26.5 GHz	Standard	$3 \%-0.5 \%$	85052B	1A7, A6J, UK6
3.5 mm	DC to 26.5 GHz	Precision	2\% - 0.5\%	85052C	1A7, A6J, UK6
2.92 mm	DC to 50 GHz	Economy	11\% - 4\% (Option 001 65\% - 3\%)	85056K	1A7, A6J, UK6, 001
2.4 mm	DC to 50 GHz	Economy	5\%-1\%	85056D	1A7, A6J, UK6
2.4 mm	DC to 50 GHz	Standard	4\% - 0.5\%	85056A	1A7, A6J, UK6
1.85 mm	DC to 67 GHz	Economy		85058E	1A7, A6J, UK6
1.85 mm	DC to 67 GHz	Standard		85058B	1A7, A6J, UK6
1 mm	DC to 110 GHz	Precision	5\%-1\%	85059A	1A7, A6J, UK6

Option description:

1A7 ISO 17025 compliant calibration
A6J ANSI Z540 compliant calibration
UK6 Commercial calibration certificate with test data
00M Includes male standards \& male-male adapter
00F Includes female standards and female-female adapter
MOF Includes male and female standards and adapters

001 Adds 2.4 mm sliding load and 2.4 mm gauges
100 Includes female-female adapter
200 Includes male-male adapter
300 Includes male-female adapter
400 Adds four 3.5 mm to Type-N adapters
500 Adds four 7 mm to 3.5 mm adapters
500* Adds four 7 mm to Type- N adapters

Adapters and Connectors

Waveguide mechanical calibrations kits

Connector	Frequency range	Type	VNA calibration accuracy	Agilent model	Available options
WR-90	8.2 to 12.4 GHz	Precision	0.3\%-0.05\%	X11644A	1A7, A6J, UK6
WR-62	12.4 to 18 GHz	Precision	0.3\%-0.05\%	P11644A	1A7, A6J, UK6
WR-42	18 to 26.5 GHz	Precision	0.3\%-0.05\%	K11644A	1A7, A6J, UK6
WR-28	26.5 to 40 GHz	Precision	0.3\%-0.05\%	R11644A	1A7, A6J, UK6
WR-22	33 to 50 GHz	Precision	0.3\%-0.05\%	011644A	1A7, A6J, UK6
WR-19	40 to 60 GHz	Precision	0.3\%-0.05\%	U11644A	1A7, A6J, UK6
WR-15	50 to 75 GHz	Precision	0.3\%-0.05\%	V11644A	1A7, A6J, UK6
WR-10	75 to 110 GHz	Precision	0.3\%-0.05\%	W11644A	1A7, A6J, UK6

Coaxial electronic calibration kits (ECal)

Connector	Frequency range	Type	VNA calibration accuracy	Agilent model	Available options
Type-F (75 $\Omega_{\text {) }}$	300 kHz to 3 GHz	2-port	N/A	85099C	UK6, 00F, 00M, M0F, 00A
Type-N (75 Ω)	300 kHz to 3 GHz	2-port	N/A	85096C	UK6, 00F, 00M, MOF, 00A
Type-N (50 Ω)	300 kHz to 9 GHz	2-port	1\%-0.1\%	85092C	1A7, A6J, UK6, 00F, 00M, MOF, 00A
Type-N (50 Ω)	300 kHz to 13.5 GHz	4-port	N/A	N4431B Option 020	1A7, A6J, UK6
Type-N (50 Ω)	300 kHz to 18 GHz	2-port	N/A	N4690B	1A7, A6J, UK6, 00F, 00M, MOF, 00A
Type-N (50 Ω)	300 kHz to 18 GHz	4-port	N/A	N4432A	N/A
7-16	300 kHz to 7.5 GHz	2-port	N/A	85098C	UK6, OOF, 00M, MOF, OOA ${ }^{1}$
7 mm	300 kHz to 9 GHz	2-port	1\%-0.1\%	85091C	1A7, A6J, UK6
7 mm	300 kHz to 18 GHz	2-port	N/A	N4696B	1A7, A6J, UK6
3.5 mm	300 kHz to 9 GHz	2-port	2\% -0.2\%	85093C	1A7, A6J, UK6, 00F, 00M, M0F, 00A ${ }^{2}$
3.5 mm	300 kHz to 13.5 GHz	4-port	N/A	N4431B Option 010	1A7, A6J, UK6
3.5 mm	300 kHz to 20 GHz	4-port	N/A	N4433A	N/A
3.5 mm	300 kHz to 26.5 GHz	2-port	N/A	N4691B	1A7, A6J, UK6, 00F, 00M, M0F, 00A ${ }^{2}$
2.92 mm	10 MHz to 40 GHz	2-port	N/A	N4692A	1A7, A6J, UK6, 00F, 00M, M0F, 00A ${ }^{3}$
2.4 mm	10 MHz to 50 GHz	2-port	N/A	N4693A	1A7, A6J, UK6, 00F, 00M, M0F, 00A 4
1.85 mm	10 MHz to 67 GHz	2-port	N/A	N4694A	1A7, A6J, UK6, 00F, 00M, M0F, 00A ${ }^{5}$
VNA Interface kit	N/A	N/A	N/A	85097B	N/A

Option description:
1A7 ISO 17025 compliant calibration
A6J ANSI Z540 compliant calibration
UK6 Commercial calibration certificate with test data
00M Includes male standards \& male-male adapter
00F Includes female standards and female-female adapter
MOF Includes male and female standards and adapters
00A Add type-N adapters

OOA ${ }^{1}$ Add 7 - 16 adapters
00A ${ }^{2}$ Add 3.5 mm adapters
00A ${ }^{3}$ Add 2.92 mm adapters
00A ${ }^{4}$ Add 2.4 mm adapters
00A ${ }^{5}$ Add 1.85 mm adapters
001 Adds data for Agilent 8702 lightwave component analyzer

Adapters and Connectors

Mechanical verification kits

Connector	Frequency range	Type	VNA calibration accuracy	Agilent model	Available options
Type-N (50 Ω)	300 kHz to 18 GHz	Precision	N/A	85055A	1A7, A6J, UK6
7 mm	300 kHz to 6 GHz	Precision	N/A	85029B	1A7, A6J, UK6, 001
7 mm	300 kHz to 18 GHz	Precision	N/A	85051B	1A7, A6J, UK6
3.5 mm	300 kHz to 26.5 GHz	Precision	N/A	85053B	1A7, A6J, UK6
2.4 mm	0.045 to 50 GHz	Precision	N/A	85057B	1A7, A6J, UK6
1.85 mm	0.010 to 67 GHz	Precision	N/A	85058V	1A7, A6J, UK6
WR-28	26.5 to 40 GHz	Precision	N/A	R11645A	1A7, A6J, UK6
WR-22	33 to 50 GHz	Precision	N/A	011645A	1A7, A6J, UK6
WR-19	40 to 60 GHz	Precision	N/A	U11645A	1A7, A6J, UK6
WR-15	50 to 75 GHz	Precision	N/A	V11645A	1A7, A6J, UK6
WR-10	75 to 110 GHz	Precision	N/A	W11645A	1A7, A6J, UK6

Option description:
1A7 ISO 17025 compliant calibration
A6J ANSI Z540 compliant calibration
UK6 Commercial calibration certificate with test data
00M Includes male standards \& male-male adapter
00F Includes female standards and female-female adapter
MOF Includes male and female standards and adapters
00A Add type- N adapters

00A ${ }^{1}$ Add 7-16 adapters
00A ${ }^{2}$ Add 3.5 mm adapters
00A ${ }^{3}$ Add 2.92 mm adapters
00A 4 Add 2.4 mm adapters
00A ${ }^{5}$ Add 1.85 mm adapters
001 Adds data for Agilent 8702 lightwave component analyzer

Amplifiers

Amplifier Outhe Drawings

Amplifiers

Agilent 83050/51A

The Agilent 83006/017/018/020/050/051A test system amplifiers offer ultra broadband performance up to 50 GHz . With excellent noise figure relative to their broad bandwidth and high gain, these products can be used to significantly reduce test system noise figure. By replacing several amplifiers with a single broadband product, test setups can be greatly simplified. You can place this amplification power where you need it, by using remotelylocatable Agilent power supplies. In addition, the Agilent 87415A provides octave band performance from 2 to 8 GHz . The Agilent 87405B preamplifier is designed for input signal preamplification of low-level instruments such as the Agilent 859X series spectrum analyzers.

These amplifiers are supplied with a 2-meter bias cable that has a connector on one end and bare wires on the other (except for the Agilent 87405B). This bias cable can be used to interface with a power supply provided by the user. Or, for a complete solution, Agilent offers the Agilent 87421/422A remotely locatable power supplies. The Agilent 87421A power supply is furnished with one 2-meter cable (Agilent 87422A, two 2-meter cables) for direct connection to an Agilent amplifier as shown in the amplifier power cable cross reference on page 30 .

Amplifiers

Selection guide

Specifications (+20 to $+30^{\circ} \mathrm{C}$)

Agilent model	Frequency range (GHz)	Output power at $P_{\text {sat }}$ ($\mathrm{dBm} / \mathrm{mW}$)	Output power at $\mathrm{P}_{1 \mathrm{~dB}}$ $(\mathrm{dBm} / \mathrm{mW})(\mathrm{min})$	Gain $(\mathrm{dB})(\mathrm{min})$	Noise figure (dB) (typ)	Detector ${ }^{1}$ output/DC connector	Bias (nom)	RF connectors (input/output)
83006A	0.01 to 26.5	$\begin{aligned} & +18 / 64 \text { typ. to } 10 \mathrm{GHz} \\ & +16 / 40 \text { typ. to } 20 \mathrm{GHz} \\ & +14 / 25 \text { typ. to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +13 / 20 \text { to } 20 \mathrm{GHz} \\ & +10 / 10 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	20	$\begin{aligned} & 13 \text { to } 0.1 \mathrm{GHz} \\ & 8 \text { to } 18 \mathrm{GHz} \\ & 13 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	No	$\begin{aligned} & +12 \mathrm{~V} @ 450 \mathrm{~mA} \\ & -12 \mathrm{~V} @ 50 \mathrm{~mA} \end{aligned}$	3.5 mm (f)
83017A	0.5 to 26.5	$+20 / 100$ typ. to 20 GHz $+15 / 32$ typ. to 26.5 GHz	$\begin{aligned} & +18 / 64 \text { to } 20 \mathrm{GHz} \\ & (18-0.75 \Delta \mathrm{f}) \mathrm{dBm}^{2} \\ & (64-7.8 \Delta \mathrm{f}) \mathrm{mw}{ }^{2} \\ & (20 \leq \mathrm{f} \leq 26.5 \mathrm{GHz}) \end{aligned}$	25	$\begin{aligned} & 8 \text { to } 20 \mathrm{GHz} \\ & 13 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	Yes/BNC (f)	$\begin{aligned} & \text { +12 V @ } 700 \mathrm{~mA} \\ & -12 \mathrm{~V} @ 50 \mathrm{~mA} \end{aligned}$	3.5 mm (f)
83018A	2 to 26.5	$+24 / 250$ min to 20 GHz $+21 / 125$ min to 26.5 GHz	$\begin{aligned} & +22 / 160 \text { to } 20 \mathrm{GHz} \\ & +17 / 50 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 27 \text { to } 20 \mathrm{GHz} \\ & 23 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 10 \text { to } 20 \mathrm{GHz} \\ & 13 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	Yes/BNC (f)	$\begin{aligned} & +12 \text { V @ } 2 \mathrm{~A} \\ & \text {-12 V @ } 50 \mathrm{~mA} \end{aligned}$	3.5 mm (f)
83020A	2 to 26.5	$+30 / 1000$ min to 20 GHz $(30-0.7 \Delta f) \mathrm{dBm} \mathrm{min}^{2}$ ($1000-65 \Delta f$) mw min ${ }^{2}$ ($20 \leq \mathrm{f} \leq 26.5 \mathrm{GHz}$)	$\begin{aligned} & +27 / 500 \text { to } 20 \mathrm{GHz} \\ & +23 / 200 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	30 to 20 GHz 27 to 26.5 GHz	$\begin{aligned} & 10 \text { to } 20 \mathrm{GHz} \\ & 13 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	Yes/BNC (f)	$\begin{aligned} & +15 \mathrm{~V} @ 3.2 \mathrm{~A} \\ & \text {-15 V @ } 50 \mathrm{~mA} \end{aligned}$	3.5 mm (f)
83050A	2 to 50	$\begin{aligned} & +20 / 100 \text { min to } 40 \mathrm{GHz} \\ & (19-0.2 \Delta f) \mathrm{dBm}^{3} \\ & (80-3.1 \Delta f) \mathrm{mw}^{3} \\ & (40<\mathrm{f} \leq 50 \mathrm{GHz}) \end{aligned}$	$\begin{aligned} & \text { +15/32 to } 40 \mathrm{GHz} \\ & +13 / 20 \text { to } 50 \mathrm{GHz} \end{aligned}$	21	$\begin{aligned} & 6 \text { to } 26.5 \mathrm{GHz} \\ & 10 \text { to } 50 \mathrm{GHz} \end{aligned}$	No	$\begin{aligned} & \text { +12 V @ } 830 \mathrm{~mA} \\ & -12 \mathrm{~V} @ 50 \mathrm{~mA} \end{aligned}$	2.4 mm (f)
83051A	0.045 to 50	$+12 / 16$ min to 45 GHz min $+10 / 10$ min to 50 GHz min	$\begin{aligned} & +8 / 6 \text { to } 45 \mathrm{GHz} \\ & +6 / 4 \text { to } 50 \mathrm{GHz} \end{aligned}$	23	$\begin{aligned} & 12 \text { to } 2 \mathrm{GHz} \\ & 6 \text { to } 26.5 \mathrm{GHz} \\ & 10 \text { to } 50 \mathrm{GHz} \end{aligned}$	No	$\begin{aligned} & \text { +12 V @ } 425 \mathrm{~mA} \\ & -12 \mathrm{~V} @ 50 \mathrm{~mA} \end{aligned}$	2.4 mm (f)
87405B	0.01 to 4	+7/5 typ.	+8/6	$\begin{aligned} & 22 \text { min } \\ & 27 \text { max } \end{aligned}$	5 to 4 GHz	No	+15 V @ 105 mA	$\begin{aligned} & \mathrm{N}(\mathrm{f}) \\ & \mathrm{N}(\mathrm{~m}) \end{aligned}$
87415A	2 to 8	+26/400 typ.	+23/200	25	13	No	+12 V @ 900 mA	SMA (f)

${ }^{1}$ Detector output can be utilized for leveling output power at the test port.
${ }^{2} \Delta f=f(G H z)-20$.
${ }^{3} \Delta f=f(G H z)-40$.

Weight: Agilent 83006A, 83017A, 83050A, 83051A, $87415 \mathrm{~A}: 0.64 \mathrm{~kg}(1.4 \mathrm{lb})$, Agilent $83018 \mathrm{~A}: 1.8 \mathrm{~kg}(4 \mathrm{lb})$, Agilent $83020 \mathrm{~A}: 3.9 \mathrm{~kg}$ (8.5 lb), Agilent $87405 \mathrm{~B}: 0.23 \mathrm{~kg}(0.5 \mathrm{lb})$

Power cable (shipped with amplifiers): 2-meter cable with a connector on one end and bare wires on the other. See amplifier power cable cross reference on page 30 .

Amplifiers

24 Amplifiers (continued)

Power supply specifications

Agilent model	ac Input voltage	DC Output (nom)	Output power	Size (H, W, D)
87421A	$\begin{aligned} & 100 \text { to } 240 \text { VAC } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	+12 V @ 2.0 A, -12 V @ 200 mA	25 W max	$\begin{aligned} & 57,114,176 \mathrm{~mm} \\ & 2.3,4.5,6.9 \mathrm{in} \end{aligned}$
87422A ${ }^{1}$	$\begin{aligned} & 100 \text { to } 240 \text { VAC } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & +15 \mathrm{~V} @ 3.3 \mathrm{~A},-15 \mathrm{~V} @ 50 \mathrm{~mA} \\ & +12 \mathrm{~V} @ 2.0 \mathrm{~A},-12 \mathrm{~V} @ 200 \mathrm{~mA} \end{aligned}$	70 W max	$\begin{aligned} & 86,202,276 \mathrm{~mm} \\ & 3.4,8.0,10.9 \mathrm{in} \end{aligned}$

${ }^{1}$ The $\pm 15 \mathrm{~V}$ output is designed to power the Agilent 83020A; the $\pm 12 \mathrm{~V}$ output can be used to power an additional amplifier.

Power cable (shipped with power supplies): 2-meter cables to connect between amplifier and power supplies. See amplifier power cable cross reference on page 30 .

Agilent 83006A

Agilent 83006-60004 cable (Shipped with Agilent 83006A, 83017A, 83018A, 83050A, 83051A, 87415A)

Dimensions are in mm (inches) nominal, unless otherwise specified.

Amplifiers

Amplifier Outline Drawings (continued)

Agilent 83017A

Agilent 83018A

Dimensions are in mm (inches) nominal, unless otherwise specified.

Agilent 83020A

Agilent 83020-60004 cable (Shipped with Agilent 83020A)

Agilent 83050A/83051A

Amplifiers

Amplifier Outline Drawings (continued)

Agilent 87415A

Agilent 87405B

Dimensions are in mm (inches) nominal, unless otherwise specified.

Amplifiers

Agilent 87421A

Agilent 87422A

Rear panel

Dimensions are in mm (inches) nominal, unless otherwise specified.

Amplifiers

Agilent 87422-60001 and 83006-60005 cable (Shipped with Agilent 87422A)

Agilent 83006-60005 cable (Shipped with Agilent 87421A)

Dimensions are in mm (inches) nominal, unless otherwise specified.

Power cable cross reference ${ }^{1}$

Agilent model number	Agilent cable part number ${ }^{2}$ (supplied with amplifier)	Agilent power supply recommended	Agilent cable part number ${ }^{3}$ (supplied with power supply)
83006A	83006-60004	87421A	83006-60005
83017A	83006-60004	87421A	83006-60005
83018A	83006-60004	87421A	83006-60005
83050A	83006-60004	87421A	83006-60005
83051A	83006-60004	87421A	83006-60005
87415A	83006-60004	87421A	83006-60005
83020A	83020-60004	87422A ${ }^{2}$	87422-60001
			83006-60005
87405A	Integral cable	Agilent 11899A power supply or spectrum analyzer	

[^2]Attenuator/Switch Driver
Attenuator Accessories

Applications

Agilent fixed and step attenuators find use in a wide variety of applications for signal conditioning and level control.

- Reducing signal levels
- Matching impedances of sources and loads
- Measuring gain or loss of a two-port device

Key specifications

- SWR
- Accuracy
- Repeatability
- Life

SWR

Most attenuators use some form of distributed thin-film attenuating element, designed to operate over multi-octave ranges and for low SWR match at input and output. The SWR characteristic is controlled with careful design of the element as well as the transition from RF connector to the element's planar geometry.

When an attenuator is inserted into a test network, the interaction of its SWR and the network SWR results in frequency-varying mismatch, which degrades the accuracy of the measurement. The amount of variation often exceeds the flatness specification of the attenuator. As an example, if at a given frequency, a 3 dB attenuator with SWR of 1.22 at each port is inserted into a microwave network that has a source and load SWR of 1.35, the variation from the expected 3 dB change could be as great as $\pm 0.5 \mathrm{~dB}$. This change is due to SWR alone and points out the importance of the SWR specification in a precision attenuator.

Accuracy

The accuracy of an attenuator directly affects the uncertainty of the measurement where the attenuator is used. In many measurement and metrology applications, attenuators are the basic standard against which other components and instruments are calibrated.

Agilent attenuator accuracy specifications always include the effect of frequency response. And, Agilent attenuators use "edgeline" coaxial structure technology to achieve low-insertion loss and SWR resulting in better accuracy.

Agilent attenuators achieve flat-frequency response and high accuracy through the use of thin-film attenuator cards. These cards are composed of high-stability tantalum nitride resistive film, deposited on sapphire or alumina substrates. Advanced design and state-of-the-art processes in the deposition stages allow precise control of the geometry and thus the attenuation value. The result is very flat frequency response and greater accuracy.

Ultimate specified accuracy of $R F /$ microwave attenuators is limited by the accuracy to which National Institute of Standards and Technology (NIST) can measure, plus the uncertainty of the measurement transfer process which calibrates the production test equipment. See Figure 1, on the next page, for an accuracy traceability example. At Agilent, performance to specifications is verified by fully testing each attenuator with an ATE system including an automatic network analyzer (ANA). In turn, the ANA is periodically calibrated using standards traceable to NIST.

Each published specification has been established using a "specification budget" process. This process provides for "guardbands" to account for transfer uncertainties between NIST, Agilent Metrology Labs, and the Agilent production test systems. Figure 2, on the next page, shows how the specification budget is allocated.

Repeatability

Fixed attenuators are often used as standards of reference in microwave measurements. Therefore, the accuracy of the measurement depends not only on the reference accuracy but on the repeatability of the insertion processes. Typical production test situations might require hundreds of connects/disconnects per day. So, measurement repeatability depends strongly on the connectors used. Agilent attenuators use precision type-N and APC-7 connectors, with repeatability that exceeds the International Electrotechnical Commission (IEC) standard for 7 mm connectors. For higher frequencies, Agilent uses 3.5 mm connectors that are fully SMA compatible, but are more rugged and repeatable than SMA. For applications to 50 GHz , Agilent uses 2.4 mm connectors that also have larger mating surfaces for rugged and repeatable connections. Design verification testing of 3.5 mm connectors showed virtually no test deterioration even after 1000 connections. For step attenuators, the repeatability of the internal RF connections is also of concern. Agilent uses an "edgeline" transmission line structure in which the outer conductor is a continuous ground plane and only the center conductor is switched to insert or remove an attenuation step. Keys to achieving long-term repeatability include precision control of all dimensions that affect contact pressure, careful selection and control of plating processes, and careful monitoring and control of the assembly process. The result is a step attenuator with repeatability specified at 0.03 dB maximum over 5 million cycles per section.

Life

The life of step attenuators is usually specified in cycles; i.e., the number of times a given attenuator section switches from one position to another and back. Agilent determines life by cycling attenuators to the point of degradation. Typically, Agilent attenuators in life cycle tests perform to specification for at least twice as many cycles as warranted. Agilent step attenuator families have a specified life of 5 million cycles per section. This long life results in lower cost of ownership by reducing periodic maintenance, downtime, and repairs.

Figure 1. Accuracy traceability example.

Figure 2. Guardband example.

Agilent 8491A/B

Agilent 8493A

Agilent 8498A

Agilent 8490D

Agilent 8491A/B, 8493A/B/C

Agilent Technologies coaxial fixed attenuators provide precise attenuation, flat frequency response, and low SWR over broad frequency ranges. Attenuators are available in nominal attenuations of 3 dB and 6 dB , as well as 10 dB increments from 10 dB to 60 dB . These attenuators are swept-frequency tested to ensure specification compliance at all frequencies. Calibration points are provided on a nameplate chart attached to each unit.

Agilent 8498A high-power attenuator

The Agilent 8498A is designed to meet the needs of high-power attenuation applications in the RF and microwave frequency range. It is a 25 watt average, 30 dB fixed attenuator with a frequency range of DC to 18 GHz . The maximum peak power specification is 500 watts (DC to 5.8 GHz) and 125 watts (5.8 to 18 GHz). Available only in a 30 dB version, the unit offers a 1.3 SWR and $\pm 1 \mathrm{~dB}$ accuracy at 18 GHz . Large heat-dissipating fins keep the unit cool even under continuous maximum input power conditions.

Agilent 8490D 50 GHz fixed attenuator

Agilent Technologies coaxial fixed attenuators have been the standard for accurate flat response and low SWR. The Agilent 8490D offers exceptional performance to 50 GHz using the 2.4 mm connector. Attenuation values available are 3, 6, 10, 20, 30 , and 40 dB . Ideally suited for extending the range of sensitive power meters or for use as calibration standards, these broadband attenuators are manufactured with the same meticulous care as their lower frequency counterparts.

Agilent 11581A, 11582A, 11583C attenuator sets

Provides a set of four attenuators ($3,6,10$, and 20 dB) furnished in a walnut accessory case. The Agilent 11581A set consists of Agilent 8491A attenuators; the Agilent 11582A set, Agilent 8491B attenuators; and the Agilent 11583C set, Agilent 8493C attenuators. These sets are ideal for calibration labs or where precise knowledge of attenuation and SWR is desired.

Agilent 86213A attenuator set

Provides a set of four 75 ohm type-N attenuators (3, 6, 10 and 20 dB) in a walnut accessory case (Agilent 0955-0765, 0955-0766, 0955-0767, and 0955-0768), respectively. Used for reducing power and improving match. SWR is 1.12 to 1.3 GHz and 1.3 to 3 GHz . Attenuation accuracy is $\pm 0.5 \mathrm{~dB}$.

Fixed attenuator selection guide

Specifications

Specifications

Agilent model	Frequency range (GHz)	Maximum SWR	Maximum input power	Attenuation accuracy					$(\pm \mathrm{dB})$			Connectors
				3 dB	6 dB	10 dB	20 dB	30 dB	40 dB	50 dB	60 dB	
$\begin{aligned} & 8491 \mathrm{~A} \\ & 3 \text { to } 30 \mathrm{~dB} \\ & 40 \text { to } 60 \mathrm{~dB} \end{aligned}$	DC to 12.4	$\begin{aligned} & 1.2 \text { to } 8 \mathrm{GHz} \\ & 1.3 \text { to } 12.4 \mathrm{GHz} \end{aligned}$		0.3	0.3	0.5	0.5	1.0	1.5	1.5	2	$\mathrm{N}(\mathrm{m}, \mathrm{f})$
8491B $\begin{aligned} & 3 \text { to } 30 \mathrm{~dB} \\ & 40 \text { to } 60 \mathrm{~dB} \end{aligned}$	DC to 18	$\begin{aligned} & 1.2 \text { to } 8 \mathrm{GHz} \\ & 1.3 \text { to } 12.4 \mathrm{GHz} \\ & 1.5 \text { to } 18 \mathrm{GHz} \end{aligned}$		0.3	$\begin{aligned} & 0.3 \text { to } 12.4 \mathrm{GHz} \\ & 0.4 \text { to } 18 \mathrm{GHz} \end{aligned}$	0.6	$\begin{aligned} & 0.6 \text { to } 12.4 \mathrm{GHz} \\ & 1.0 \text { to } 18 \mathrm{GHz} \end{aligned}$	1.0	1.5	1.5	2	$N(m, f)$
8493A $\begin{aligned} & 3 \text { to } 20 \mathrm{~dB} \\ & 30 \mathrm{~dB} \end{aligned}$	DC to 12.4	$\begin{aligned} & 1.2 \text { to } 8 \mathrm{GHz} \\ & 1.3 \text { to } 12.4 \mathrm{GHz} \end{aligned}$	2 W avg. 100 W peak	0.3	0.3	0.5	0.5	1.0	N/A	N/A	N/A	SMA (m, f)
$\begin{aligned} & \text { 8493B } \\ & 3 \text { to } 20 \mathrm{~dB} \\ & 30 \mathrm{~dB} \end{aligned}$	DC to 18	$\begin{aligned} & 1.2 \text { to } 8 \mathrm{GHz} \\ & 1.3 \text { to } 12.4 \mathrm{GHz} \\ & 1.5 \text { to } 18 \mathrm{GHz} \end{aligned}$		0.3	$\begin{aligned} & 0.3 \text { to } 12.4 \mathrm{GHz} \\ & 0.4 \text { to } 18 \mathrm{GHz} \end{aligned}$	0.6	$\begin{aligned} & 0.6 \text { to } 12.4 \mathrm{GHz} \\ & 1.0 \text { to } 18 \mathrm{GHz} \end{aligned}$	1.0	N/A	N/A	N/A	SMA (m, f)
$\begin{aligned} & 8493 \mathrm{C} \\ & 3 \text { to } 30 \mathrm{~dB} \\ & \hline 40 \mathrm{~dB} \end{aligned}$	DC to 26.5	$\begin{aligned} & 1.1 \text { to } 8 \mathrm{GHz} \\ & 1.15 \text { to } 12.4 \mathrm{GHz} \\ & 1.25 \text { to } 26.5 \mathrm{GHz}{ }^{1} \end{aligned}$		$\begin{aligned} & 0.5 \text { to } 18 \mathrm{GHz} \\ & 1.0 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.6 \\ \hline 0.6 \\ \hline \end{array}$	0.3 0.5	0.5	0.7 1.0	1.0	N/A	N/A	$3.5 \mathrm{~mm}(\mathrm{~m}, \mathrm{f})$
8498A 30 dB	DC to 18	$\begin{aligned} & 1.15 \text { to } 8 \mathrm{GHz} \\ & 1.25 \text { to } 12.4 \mathrm{GHz} \\ & 1.30 \text { to } 18 \mathrm{GHz} \end{aligned}$	25 W avg. 500 W peak (DC to 5.8 GHz) 125 W peak 500 W/ms max. per pulse (5.8 to 18 GHz)	N/A	N/A	N/A	N/A	1.0	N/A	N/A	N/A	$N(m, f)$

[^3]
Attenuators

Agilent 8490D

Dimension A
3, 6, 10, $20 \mathrm{~dB}: 27$ (1.06) 30, 40 dB: 29 (1.14)

Agilent 8493A, B

Agilent 8493C

Dimension A
3, 6, 10, 20 dB: 33.8 (1.330)
30,40 dB: 36.8 (1.450)

Dimensions are in mm (inches) nominal, unless otherwise specified.

Fixed attenuator ordering information

Agilent 8490/91/92/93/98 series ordering example ${ }^{1}$

Agilent 8493 C	Option 010	Option UK6
Frequency range	Attenuation	Calibration documentation
OD: DC to 50 GHz	003: 3 dB	UK6: Commercial calibration
1A: DC to 12.4 GHz	006: 6 dB	test data with certificate
1B: DC to 18 GHz	010: 10 dB	
3A: DC to 12.4 GHz	020: 20 dB	
3B: DC to 18 GHz	030: 30 dB	
3C: DC to 26.5 GHz	040: $40 \mathrm{~dB}^{2}$	
8A: DC to 18 GHz	050: $50 \mathrm{~dB}^{2}$	
	060: $60 \mathrm{~dB}^{2}$	

${ }^{1}$ Each order must specify an attenuation option.
${ }^{2}$ Not available on all models. See specification table.

Attenuators

Step attenuator selection guide

	Frequency range						
	Step size	Attenuation range	DC to 4 GHz	DC to 18 GHz	DC to 26.5 GHz	DC to 40 GHz	DC to $\mathbf{5 0 ~ G H z}$
Manual	1 dB	0 to 11 dB	8494A	8494B			84904M
	10 dB	$\begin{aligned} & 0 \text { to } 70 \mathrm{~dB} \\ & 0 \text { to } 110 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { 8495A } \\ & 8496 A \end{aligned}$	$\begin{aligned} & \text { 8495B } \\ & \text { 8496B } \end{aligned}$	8495D		
Programmable	1 dB	0 to 11 dB	8494G	8494H	84904K	84904L	
	5 dB	0 to 65 dB					84908M
	10 dB	0 to 60 dB 0 to 70 dB 0 to 90 dB 0 to 110 dB	8495G 8496G	8495H 8496H	$\begin{aligned} & 8495 \mathrm{~K} \\ & 84907 \mathrm{~K} \\ & 8497 \mathrm{~K} \\ & 84906 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 84907 \mathrm{~L} \\ & 84906 \mathrm{~L} \end{aligned}$	84905M

Agilent 84904/906/907 series

This family of programmable step attenuators offers unmatched attenuation performance to 50 GHz . The K models bring superior accuracy and reliability to 26.5 GHz , and the L and M models offer unparalleled performance to 40 and 50 GHz respectively.

Agilent step attenuators consist of 3 or 4 cascaded sections of specific attenuation values; e.g., $1,2,4$, or $10,20,30$, or 40 dB . Both families offer the selection, performance, accuracy, and reliability expected from Agilent: attenuation ranges of 11, 70, or $90 \mathrm{~dB}, 1 \mathrm{~dB}$, and 10 dB step sizes, 5 million cycles per section and better than 0.03 dB repeatability. RF connector choices include precision 3.5 mm on the 26.5 GHz K models, and precision 2.4 mm or 2.92 mm on the L models. While the $2.92-\mathrm{mm}$ connector format is compatible with both $3.5-\mathrm{mm}$ and SMA connectors, Agilent Technologies recommends the more rugged $2.4-\mathrm{mm}$ connectors.

Agilent programmable step attenuators feature electro-mechanical designs that achieve 20 milliseconds switching time, including settling time. The permanent magnet latching allows automatic interruption of the DC drive voltage to cut power consumption and simplify circuit design. They are equipped with 10 -pin DIP sockets (m) and have optional interconnect cables available.

Agilent 84904L

Agilent 8494/95/96A/B/D

Agilent 8494/95/96G/H/K

Agilent 84904M

Agilent 8494/95/96/97 series

This family of manual step attenuators offers fast, precise signallevel control in three frequency ranges, DC to $4 \mathrm{GHz}, \mathrm{DC}$ to 18 GHz , and DC to 26.5 GHz . They feature exceptional repeatability and reliability in a wide range of frequency, attenuation, and connector options.

Attenuation repeatability is specified to be less than 0.03 dB ($0.05 \mathrm{~dB}, 18$ to 26.5 GHz) for 5 million cycles per section. This assures low-measurement uncertainty when designed into automatic test systems. Electromechanical step attenuators offer low SWR, low-insertion loss, and high-accuracy required by high-performance test and measurement equipment.

Precision-plated, leaf-spring contacts insert/remove attenuator sections (miniature tantalum nitride thin-film T-pads on sapphire and alumina substrates) from the signal path. Unique process controls and material selection ensure unmatched life and contact repeatability.

Programmable models

Miniature drive solenoids in the programmable models keep switching time, including settling, down to less than 20 milli-seconds. Once switched, strong permanent magnets hold the solenoids (and attenuation value) in place. Current interrupts automatically disconnect solenoid current, simplifying driver circuit design, and minimizing heat dissipation. Programming is done through a 12 -pin Viking socket or optional ribbon cables with DIP plugs. Automatic drive control is easy using the GPIB compatible Agilent 11713A or 87130A attenuator/switch driver and an external controller.

Programmable driver instruments

Programmable drive options for step attenuators include the Agilent 11713A attenuator/switch driver, which permits users to easily integrate the attenuator into GPIB compatible automatic test systems.

Interconnect cable selections include various connector and ribbon cable configurations to match user applications.

Manual models

These models provide excellent performance with the simplicity and convenience of positive manual switching. A low-torque camshaft activates the insertion and removal of the attenuation sections. Positive detents and an attenuation-level indicator ensures quick and accurate control.

Attenuator interconnecting kits

To achieve 1 dB step resolution up to $81 \mathrm{~dB}, 101 \mathrm{~dB}$ or 121 dB , combine the Agilent 8494 with $8495 / 96 / 97$ using the Agilent 11716A, B, C interconnect kits to cascade attenuators in series.

Attenuators

Specifications

${ }^{1}$ Measured at $25^{\circ} \mathrm{C}$.
${ }^{2}$ Not to exceed average power.

Agilent 8494/95/96/97 series options

	Option 024	Option 011	Option 015
Supply voltage Supply voltage range Supply voltage (nom)	$\begin{aligned} & 20 \text { to } 30 \mathrm{Vdc} \\ & 24 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 4.5 \text { to } 7 \mathrm{Vdc} \\ & 5 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 13 \text { to } 22 \mathrm{Vdc} \\ & 15 \mathrm{Vdc} \end{aligned}$
Current drawn	125 mA	300 mA	187 mA
RF connectors A, B, G, H models D, K models	Option 001: N (f) Option 004: $3.5 \mathrm{~mm}(\mathrm{f})$	Option 002: SMA (f)	Option 003: APC-7
DC connectors G, H, K models	Option 060: 12-pin Viking connector Option 016: 16 -inch ribbon cable with 14 -pin DIP plug		
Calibration documentation	See ordering information		

Specifications

Agilent model (switching mode)	Frequency range (GHz)	Attenuation range	Insertion loss @ 0 dB	Maximum SWR Option 101. (Option 106)	Repeatability ${ }^{1}$ life	Maximum RF input power	Shipping weight
84904K (Programmable)	DC to 26.5	0 to 11 dB 1 dB steps	$\begin{aligned} & 0.8 \mathrm{~dB}+ \\ & 0.04 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.3(1.5) \text { to } 12.4 \mathrm{GHz} \\ & 1.7(1.9) \text { to } 34 \mathrm{GHz} \\ & 1.8(2.0) \text { to } 40 \mathrm{GHz} \end{aligned}$	0.03 dB typical. 5 million cycles per section	1 W avg. 50 W peak ${ }^{2}$ ($10 \mu \mathrm{~s}$ max)	0.29 kg
84904L (Programmable)	DC to 40						(10.32 oz)
84906K (Programmable)	DC to 26.5	0 to 90 dB 10 dB steps	$\begin{aligned} & 0.8 \mathrm{~dB}+ \\ & 0.04 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.3 \text { (1.5) to } 12.4 \mathrm{GHz} \\ & 1.7 \text { (1.9) to } 34 \mathrm{GHz} \\ & 1.8 \text { (2.0) to } 40 \mathrm{GHz} \end{aligned}$			0.29 kg
84906L (Programmable)	DC to 40						(10.32 oz)
84907K (Programmable)	DC to 26.5	$\begin{aligned} & 0 \text { to } 70 \mathrm{~dB} \\ & 10 \mathrm{~dB} \text { steps } \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~dB}+ \\ & 0.03 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.25(1.4) \text { to } 12.4 \mathrm{GHz} \\ & 1.5 \text { (1.7) to } 34 \mathrm{GHz} \\ & 1.7 \text { (1.9) to } 40 \mathrm{GHz} \end{aligned}$			0.23 kg
84907L (Programmable)	DC to 40						(8.1 oz)

[^4]
Attenuators

Agilent 84904/906/907 series options

Specifications

Agilent model (switching model)	Frequency range (GHz)	Attenuation range	Insertion loss @ 0 dB	Maximum SWR	Repeatability ${ }^{3}$ life	Maximum RF input power	Shipping weight
84904M (Programmable)	DC to 50	$\begin{aligned} & 0 \text { to } 11 \mathrm{~dB} \\ & 1 \mathrm{~dB} \text { steps } \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~dB}+ \\ & 0.04 \mathrm{~dB} / \mathrm{GHz} \text { to } 40 \mathrm{GHz} \\ & 3 \mathrm{~dB} \text { to } 50 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.3 \text { to } 12.4 \mathrm{GHz} \\ & 1.7 \text { to } 34 \mathrm{GHz} \\ & 1.8 \text { to } 40 \mathrm{GHz} \\ & 3 \text { to } 50 \mathrm{GHz} \end{aligned}$	0.03 dB typical 2 million cycles per section	1 W avg. 50 W peak ${ }^{4}$ (10 $\mu \mathrm{s}$ max)\qquad	$\begin{aligned} & 0.291 \mathrm{~kg} \\ & (10.3 \mathrm{oz}) \end{aligned}$
84905M (Programmable)		$\begin{aligned} & 0 \text { to } 60 \mathrm{~dB} \\ & 10 \mathrm{~dB} \text { steps } \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~dB}+ \\ & 0.03 \mathrm{~dB} / \mathrm{GHz} \text { to } 40 \mathrm{GHz} \\ & 2.6 \mathrm{~dB} \text { to } 50 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.25 \text { to } 12.4 \mathrm{GHz} \\ & 1.5 \text { to } 34 \mathrm{GHz} \\ & 1.7 \text { to } 40 \mathrm{GHz} \\ & 2.6 \text { to } 40 \mathrm{GHz} \end{aligned}$			$\begin{aligned} & 0.229 \mathrm{~kg} \\ & (8.1 \mathrm{oz}) \end{aligned}$
84908M (Programmable)		0 to 65 dB 5 dB steps	$\begin{aligned} & 0.8 \mathrm{~dB}+ \\ & 0.04 \mathrm{~dB} / \mathrm{GHz} \text { to } 40 \mathrm{GHz} \\ & 3 \mathrm{~dB} \text { to } 50 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.3 \text { to } 12.4 \mathrm{GHz} \\ & 1.7 \text { to } 34 \mathrm{GHz} \\ & 1.8 \text { to } 40 \mathrm{GHz} \\ & 3 \text { to } 50 \mathrm{GHz} \end{aligned}$			$\begin{aligned} & 0.291 \mathrm{~kg} \\ & (10.3 \mathrm{oz}) \end{aligned}$

Agilent 84904/905/908M series options

${ }^{1}$ Drive cable end.
${ }^{2}$ End opposite to drive cable.
${ }^{3}$ Measured at $25^{\circ} \mathrm{C}$.
${ }^{4}$ Not to exceed average power.

Outline Drawings

Agilent 84904/906/907 series - programmable

Agilent 8494/95/96/97 series - manual

4-40 UNC $\times 5.11 \mathrm{~mm}(.20)$ deep Mounting holes (2), this side only
${ }_{2}^{1}$ Agilent 8495A, B.
${ }^{2}$ Agilent 8494A, B, 8495D, 8496A, B. by user to access mounting holes as shown.

Dimensions are in mm (inches) nominal, unless otherwise specified.

Attenuators

Agilent 8494/95/96/97 series - programmable

5

To remove: Press at arrows with thumb and finger; pull to detach. Caution: Do not twist.

Note: Base can be removed by user to access mounting holes as shown above.
${ }^{1}$ Agilent 8495G, H.
${ }^{2}$ Agilent 8494G, H, 8495K, 8496G, H, 8497K.

Dimensions are in mm (inches) nominal, unless otherwise specified.

Step attenuator ordering information

Agilent 8494/95/96/97 series ordering example

Agilent 84904/905/906/907/908 series ordering example ${ }^{5}$

${ }^{1}$ Each order must include RF connector option.
${ }^{2}$ Available with Agilent 8495 only.
${ }^{3}$ Available with Agilent 8495/97 only.
${ }^{4}$ Available with Agilent 8494/96/G/H and 8495H only.
${ }^{5}$ Drive cable not included.
${ }^{6}$ Option UK6 not available with Option 106.
${ }^{7}$ Available with 84904/906/907 only.
${ }^{8}$ Available with 84904/905/908 only.

Agilent 11713A

Agilent 11716A

Agilent 11713A attenuator/switch driver

This driver provides GPIB or "local" front panel drive control for programmable attenuators and electromechanical switches. Concurrently, drive up to two Agilent 8494/95/96 and Agilent 87904/906/907 programmable attenuators and two electromechanical switches (Agilent 8761, 8762, or 8765 series). The Agilent 11713 A can also be used to supply +24 V common and ten pairs of current sinking contacts (total current draw <1.25 A peak for 1 second, 0.65 A steady state) to independently control up to 10 relays. An integral power supply (with short circuit protection) eliminates the need for an external power source. Each Agilent 11713A is supplied with two plug-in drive cables to simplify connection to programmable attenuators. Switching time is less than 10 milliseconds.

Attenuator accessories

Agilent 11716 series attenuator interconnect kits
These kits can be utilized to connect any two of the Agilent 8494/95/96 attenuators in series. The rigid interconnect cable is available in type- N , and SMA connectors as described below.

Agilent 11716A Attenuator Interconnect Kit (type-N)
Agilent 11716C Attenuator Interconnect Kit (SMA)

Attenuator/Switch Driver

Attenuator/Switch Driver

Agilent 11713A attenuator/switch driver

The Agilent 11713A attenuator/switch driver provides simple GPIB control of up to ten 24 Vdc solenoid activated switch or attenuator sections. The Agilent 11713A supplies 24 Vdc common and ten pairs of current sinking contacts to control up to 10 relays. The internal 24 Vdc power supply can deliver control signals totaling 0.65 Amps continuously or 1.3 Amps for one second. Each Agilent 11713A comes equipped with two plug-in drive cables for driving attenuators. The convenient front panel controls allow manual control of individual attenuator sections and/or switches.

Compatible Agilent switches and attenuators

The Agilent 11713A attenuator/switch driver is designed to control the following Agilent attenuators and switches.

Product	Agilent part number
Programmable attenuator	$8494 \mathrm{G}, \mathrm{H}$
	$8495 \mathrm{G}, \mathrm{H}, \mathrm{K}$
	$8496 \mathrm{G}, \mathrm{H}$
	8497 K
	$84904 \mathrm{~K}, \mathrm{~L}$
	$84906 \mathrm{~K}, \mathrm{~L}$
	$84907 \mathrm{~K}, \mathrm{~L}$
Bypass switch	$8763 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$
	$8764 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$
	N1811TL, N1812UL
Matrix switch	87406 B
Multiport switch	87606 B
	$87104 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$
	$87106 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$
	$87204 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$
Transfer switch	$87206 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$
	8766 K
	8767 K
	8768 K
	8769 K
	8769 M
	8767 M
	8768 M
	8761 B
	$8762 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{F}$
	$8765 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{F}$
	N1810UL, N1810TL
	$8722 \mathrm{C}, \mathrm{D}, \mathrm{E}$

Agilent 11713A

Supplemental characteristic

Power	100 or $120 \mathrm{Vac},+5 \%,-10 \%$ at 48 to 440 Hz 200 or $240 \mathrm{Vac},+5 \%,-10 \%$ at 48 to 66 Hz 80 VA maximum				
Response time	$10 \mu \mathrm{~s}$ maximum for contact pairs 1 through $20 \mu \mathrm{~s}$ maximum for contact pairs 9 and 0				
Driver life	$>2,000,000$ switchings at maximum current for				
contact pairs 9 and 0		$	$	Maximum load inductance	500 mH
:---	:---				
Maximum load capacitance	$<0.01 \mathrm{mF}$ for contact pairs 9 and 0				
Net weight	$4.1 \mathrm{~kg}(9 \mathrm{lbs})$				
Dimensions	Height: $102 \mathrm{~mm}(4$ inches including feet) Rack height: $89 \mathrm{~mm}(3.5$ inches, half-width module Width: $213 \mathrm{~mm}(8.4$ inches) Depth: $295 \mathrm{~mm}(11.6$ inches)				

Ordering information

Option 101 - Viking to viking drive cables; quantity (2)
Option 001 - Viking connector to 10-pin DIP plug; quantity (2)

DC Block

DC Block

Overview

The Agilent 11742A DC block offers a new level of performance in coaxial blocking capacitors. The device is broadband with a frequency range of 0.045 to 26.5 GHz , has low SWR (<1.11 to 12.4 GHz and <1.23 to 26.5 GHz) and low insertion loss.

Agilent 11742A specifications

Environmental specifications

Temperature	
Non-operating	
Operating	$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Altitude	$-5^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Non-operating Operating	$50,000 \mathrm{ft}$
Humidity	$15,000 \mathrm{ft}$
Vibration	Cycling 5 days, $+40^{\circ} \mathrm{C}$ @ $95 \% \mathrm{RH}$
Shock	0.015 in, $5-55-5 \mathrm{~Hz} 15$ minutes 3 axes
EMC	$100 \mathrm{~g}, 1$ to $2 \mathrm{mS}, 3$ times 3 planes
	Radiation interference is within the requirements of MIL-STD-461, method RE02, VDE 0871, CISPR Publication 11

Agilent 11742A

Agilent 11742A DC Block

The 11742A is used in biased microwave circuits such as a DC block, to suppress low frequency signals which may affect the accuracy of your microwave and RF measurements.

The 11742A is an INSIDE block which places the capacitance in series with the center conductor, preventing low frequency signals from flowing along the center conductor. The male and female APC-3.5 mm connectors allow for excellent operation between 0.045 GHz and 26.5 GHz

Outline drawing

Planar-Doped Barrier
Diode Detector 57
Low-Barrier Schottky
Diode Detector 58
Detectors 59
Broadband Directional
Detectors 61

Detectors

Applications

Agilent Technologies broadband detectors ${ }^{1}$ span frequencies from 100 kHz to 50 GHz . These detectors are widely used on the design and production test bench, as well as for internal components of test system signal interface units. They find use in a variety of test and measurement applications.

- Power monitoring
- Source leveling
- Video detection
- Swept transmission and reflection measurements

Technology

Agilent detectors are available in two families - Silicon Low Barrier Schottky Diode (LBSD) and Gallium Arsenide Planar Doped Barrier Diode (GaAs PDBD) detectors. The Gallium Arsenide detector technology produces diodes with extremely flat frequency response to 50 GHz . Also, the GaAs PDBD detector has a wider operating temperature range $\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$, and is less sensitive to temperature changes.

Key specifications

- Frequency range
- Frequency response
- Open circuit voltage sensitivity
- Tangential sensitivity
- Output voltage versus temperature
- Rise time
- SWR
- Square-law response
- Input power

Frequency range

Frequency range can be one of the most important factors to consider when specifying detectors. In the past, broadband frequency coverage was equated with high performance. It is important to note that though broadband coverage may be desirable in multi-octave applications, a good octave range detector may be your best solution for non-swept applications. Broadband coverage saves you from the inconvenience of having to switch between detectors when making measurements, but you may be sacrificing SWR and frequency response flatness. All of Agilent's 8474 family of coaxial detectors are available in both octave band and broadband versions. The guaranteed performance of the octave band models are characterized for frequency response flatness and SWR.

Frequency response

Frequency response is the variation in output voltage versus frequency, with a constant input power. Frequency response is referenced to the lowest frequency of the band specified. Agilent typically uses -30 dBm to measure frequency response. Agilent uses precision thin-film input circuitry to provide good, broadband input matching. Exceptionally flat frequency response is provided by the very low internal capacitance of the PDB diode. Also, excellent control of the video resistance of the PDB diode is obtained by the precision growth of molecular beam epitaxy (MBE) layers during diode fabrication.

Figure 1 displays frequency response characteristics comparing Agilent LBSD and PDBD detectors. The figure indicates typical performance of each device and the published specifications. Frequency response specifications include the mismatch effects of the detector input SWR specifications. Note that the Agilent 8474E, representative of PDBD detectors, is exceptionally flat beyond 26.5 GHz .

Figure 1. Detector frequency response characteristics.

[^5]
Open circuit voltage sensitivity

The open circuit voltage sensitivity (K) describes the slope of the transfer function of the detectors. This represents the conversion of RF/microwave power to a voltage at the output connector, typically specified in $\mathrm{mV} / \mathrm{mW}$. The value is an indication of the efficiency of the diode in converting the input power to a useful voltage.

Sensitivity is measured with the detector terminated in a high impedance. When used in video pulse applications, the sensitivity will appear to be much lower when terminated in 50 or 75 ohms for connection to an oscilloscope. Another factor, called the Figure of Merit, gives an indication of low-level sensitivity without consideration of a load circuit. It is useful for comparing detectors with different values of K and R_{V}. Figure of Merit equals $\mathrm{K} / \sqrt{R_{v}}$, where $R_{v}=$ internal video resistance.

Tangential sensitivity

Tangential sensitivity is the lowest input signal power level for which the detector will have an 8 dB signal-to-noise ratio at the output of a test video amplifier. Test amplifier gain is not relevant because it applies to both signal and noise. Agilent detectors are designed for optimal flatness and SWR. Figure 2 shows typical tangential sensitivity.

Output voltage versus temperature

For applications such as power monitoring and leveling that require stable output voltage versus input power, the designer can choose a resistive termination that will optimize the transfer function over a wide temperature range. Figure 3 shows how sensitivity changes over temperature with different load resistances. In this case, a value between $1 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ will be optimum for 0 to $50^{\circ} \mathrm{C}$.

Rise time

In applications where the frequency response of another microwave device is being measured, or where a fast rise time response is required for accurate measurements, the rise time of the detector becomes very important. It is critical to note that the rise time is dependent upon the characteristics of the detector AND the test equipment.

Where: $\quad B=$ Video amplifier bandwidth (Hz)
$F=$ Video amplifier noise factor $=10($ Noise figure/10)
$\mathrm{R}_{\mathrm{v}}=$ Video resistance (Ω)
$K=$ Open circuit voltage Sensitivity ($\mathrm{mV} / \mathrm{mW}$)

Figure 2. Typical tangential sensitivity performance.

Figure 3. Typical output response with temperature (Pin <-20 dBm) (Schottky diode).

Detectors

Figure 4 shows the typical equivalent circuit of a test detector, and can help in devising the external terminations and cables to connect to an oscilloscope or other instrument. The following equation gives the approximate rise time for different conditions of load resistance and capacitance. Note that rise time can be improved (lowered) with a termination of less than 50Ω. This rise time improvement comes at the expense of lower pulse output voltage. The lower voltage can be overcome with the gain of a high performance oscilloscope.

Broadband match (SWR)

In many applications, the match (SWR) of the detector is of prime importance in minimizing the uncertainty of power measurements. If the input of the detector is not well matched to the source, simple and multiple mismatch errors will result, reducing the accuracy of the measurement.

Figure 5 represents the mismatch error introduced by multiple reflections caused by a mismatch between the detector and the source. For a detector SWR of 2.0 and source SWR of 2.0, the uncertainty is $\pm 1.0 \mathrm{~dB}$. For the LBSD and PDBD models, the integration of the diode with the 50Ω matching resistor results in an excellent broadband match. Both LBSD and PDBD detectors utilize thin-film technology which yields a precision matching circuit that minimizes stray reactance and yields very good performance. Figure 6 displays typical SWR for the Agilent 8473B,C LBSD detector and the Agilent 8473D PDBD detector.
$\mathbf{T}_{\mathbf{r}}(10 \%$ to $90 \%)=\frac{2.2 * \mathbf{R}_{\mathbf{L}} * \mathbf{R}_{\mathbf{V}}{ }^{*}\left(\mathbf{C}_{\mathbf{L}}+\mathbf{C}_{\mathbf{b}}\right)}{\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\mathbf{V}}}=\frac{0.35}{\mathbf{B W}}$

Determined by

Measuring equipment Detector
Measuring equipment Detector

Typical values:

R_{v} (diode video impedance) $=1.5 \mathrm{k} \Omega{ }^{1}$
$\mathrm{C}_{\mathrm{b}}(\mathrm{RF}$ bypass capacitor) $=27 \mathrm{pF}$ nom .

> 1 @ $25^{\circ} \mathrm{C}$ and $P_{\text {in }}<-20 \mathrm{dBm}$.
> Extremely sensitive to power and temperature.

Figure 4. Detector model.

Figure 5. Mismatch error from detector and source mismatch.

Figure 6. Typical SWR of detectors.

Square law performance

When detectors are used in reflectometer and insertion loss setups, the measurement uncertainty depends on the output voltage being proportional to input power. The term square law comes from the output voltage being proportional to the input power (input voltage squared). Most microwave detectors are inherently square law from the $\mathrm{P}_{\text {tss }}$ level up to about -15 dBm . Figure 7 shows this characteristic.

Figure 8 shows detector output in dB relative to $P_{\text {in }}=-20 \mathrm{dBm}$. As $\mathrm{P}_{\text {in }}$ exceeds -20 dBm , the detector response deviates from square law. The user can select a load resistor that will extend the upper limit of the square law range beyond $\pm 15 \mathrm{dBm}$. By choosing the square law load option, the deviation from ideal square law response will be $\pm 0.5 \mathrm{~dB}$ (although the sensitivity specification is decreased by a factor of 4).

Figure 7. Typical detector square law response (mV).

Figure 8. Typical detector square law response (dB).

Detectors

Low-barrier Schottky diode detectors

Agilent 423B, 8470B, 8472B, 8473B, C, 33330B, C LBSD detectors have been widely used for many years in a variety of applications including leveling and power sensing. They offer good performance and ruggedness. Matched pairs (Option 001) offer very good detector tracking. A square law load option (Option 002) extends the square law region to at least 0.1 mW (-10 dBm).

Planar-doped barrier detectors

Agilent 8471D, E detectors are planardoped barrier detectors offering excellent performance to 2 and 12 GHz . The Agilent 8471D covers 100 kHz to 2 GHz with a $\mathrm{BNC}(\mathrm{m})$ input connector and the Agilent 8471E covers 10 MHz to 12 GHz with a SMA (m) input connector. Both detectors come standard with negative polarity output, a positive polarity output is available as Option 103.

High performance planar-doped barrier detectors

Agilent 8474B, C and E detectors are the newest additions to the Agilent family of high performance detectors. Utilizing a gallium arsenide, planar-doped barrier detecting diode, these detectors offer superior performance when compared to Schottky diodes. They feature extremely flat frequency response (typically better than $\pm 1 \mathrm{~dB}$ to 50 GHz) and very stable frequency response versus temperature.

These detectors are available with type-N, $3.5-\mathrm{mm}$, or $2.4-\mathrm{mm}$ connectors. They are also offered with an option for positive output polarity (Option 103). Additionally, some detectors have an optimal square law load available (Option 102).

For applications requiring an octave band or less, Agilent $8474 \mathrm{~B}, \mathrm{C}, \mathrm{E}$ detectors are available with frequency band options that feature lower SWR and flatter frequency response.

Agilent 8472B

Agilent 8473D

Agilent 8471D, E

Selection guide

Operating frequency						
Input connector type	Up to 2 GHz	Up to 12 GHz	Up to 18 GHz	Up to 26.5 GHz	Up to 33 GHz	Up to $50 \mathbf{~ G H z}$
BNC	8471D					
Type-N		423B	8474B			
APC-7	8470B					
SMA		8471E	8472B		8473D, 8474C	
3.5 mm			33330B, 8473B	8473C		
2.4 mm				$33330 C$		8474E

Specifications

Agilent model	8471D	8471E	8473D	8474B	8474C	8474E
Frequency range (GHz)	0.0001 to 2	0.01 to 12	0.01 to 33	0.01 to 18	0.01 to 33	0.01 to 50
Frequency response (dB)	$\begin{aligned} & \pm 0.2 \text { to } 1 \mathrm{GHz} \\ & \pm 0.4 \text { to } 2 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.23 \text { to } 4 \mathrm{GHz} \\ & \pm 0.6 \text { to } 8 \mathrm{GHz} \\ & \pm 0.85 \text { to } 12 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.25 \text { to } 14 \mathrm{GHz} \\ & \pm 0.4 \text { to } 26.5 \mathrm{GHz} \\ & \pm 1.25 \text { to } 33 \mathrm{GHz} \\ & (\pm 2.0 \text { dB typical to } 40 \mathrm{GHz} \text {) } \end{aligned}$	± 0.35 to 18 GHz	$\begin{aligned} & \pm 0.4 \text { to } 26.5 \mathrm{GHz} \\ & \pm 0.7 \text { to } 33 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.3 \text { to } 26.5 \mathrm{GHz} \\ & \pm 0.6 \text { to } 40 \mathrm{GHz} \\ & \pm 1.0 \text { to } 50 \mathrm{GHz} \end{aligned}$
Maximum SWR	$\begin{aligned} & 1.23 \text { to } 1 \mathrm{GHz} \\ & 1.46 \text { to } 2 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 4 \mathrm{GHz} \\ & 1.7 \text { to } 8 \mathrm{GHz} \\ & 2.4 \text { to } 12 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 14 \mathrm{GHz} \\ & 1.4 \text { to } 26.5 \mathrm{GHz} \\ & 3.0 \text { to } 33 \mathrm{GHz} \\ & \text { (3.0 typical to } 40 \mathrm{GHz} \text {) } \end{aligned}$	1.3 to 18 GHz	$\begin{aligned} & 1.4 \text { to } 26.5 \mathrm{GHz} \\ & 2.2 \text { to } 33 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 26.5 \mathrm{GHz} \\ & 1.6 \text { to } 40 \mathrm{GHz} \\ & 2.8 \text { to } 50 \mathrm{GHz} \end{aligned}$
Low-level sensitivity $(\mathrm{mV} / \mu \mathrm{W})$	>0.5	>0.4	>0.4	>0.4	$\begin{aligned} & >0.4 \\ & >0.34 \text { to } 50 \mathrm{GHz} \end{aligned}$	>0.4 to 40 GHz
Maximum operating input power	100 mW	200 mW				
Typical short term maximum input power (<1 minute)	0.7 W	0.75 W	1 W	0.75 W	0.75 W	0.75 W
Video impedance (nom)	$1.5 \mathrm{k} \Omega$					
RF bypass capacitance (nom)	6800 pF	30 pF	30 pF	27 pF	27 pF	27 pF
Output polarity	Negative	Negative	Negative	Negative	Negative	Negative
Input connector	BNC (m)	SMA (m)	$3.5 \mathrm{~mm}(\mathrm{~m})$	Type-N (m)	3.5 mm (m)	2.4 mm (m)
Output connector	BNC (f)	SMC (m)	BNC (f)	BNC (f)	SMC (m)	SMC (m)

Options

Agilent model	8471D	8471E	8473D	8474B	8474C	8474E
Optimal square law load 1	Option 102	N/A	N/A	Option 102	N/A	N/A
Positive polarity output	Option 103	Option 103	Option 003	Option 103	Option 103	N/A
Frequency band	N/A	Option 004 4 GHz operation	N/A	See PDBD frequency band options		

PDBD frequency band options

Agilent 8474B options			$\mathbf{0 0 1}$	$\mathbf{0 0 2}$	$\mathbf{0 0 4}$
Frequency range (GHz)	0.01 to 18	0.01 to 2	2 to 4	$\mathbf{0 0 8}$	
Frequency response (dB)	± 0.35	± 0.25	± 0.25	\pm to 8	
Maximum SWR	<1.31	1.09	1.1	1.2	
Agilent 8474C options	$\mathbf{0 0 1}$	$\mathbf{0 0 8}$	$\mathbf{0 1 2}$	$\mathbf{0 3 3}$	
Frequency range (GHz)	0.01 to 33	4 to 8	8 to 12.4	26.5 to 33	
Frequency response (dB)	± 0.3	± 0.2	± 0.25	± 0.3	
Maximum SWR	<2.2	1.16	1.2	2.2	

[^6]
Detectors

Specifications

Agilent model	423B	8470B	8472B	8473B	33330B	8473C	33330C
Freq. range (GHz)	0.01 to 12.4	0.01 to 18	0.01 to 18	0.01 to 18	0.01 to 18	0.01 to 26.5	0.01 to 26.5
Freq. response (dB) $(\pm 0.2 \mathrm{~dB}$ over any octave from 0.01 to 8 GHz on all models)	± 0.3 to 12.4 GHz	$\begin{aligned} & \pm 0.3 \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.5 \text { to } 15 \mathrm{GHz} \\ & \pm 0.6 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.3 \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.5 \text { to } 15 \mathrm{GHz} \\ & \pm 0.6 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.3 \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.6 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.3 \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.6 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.3 \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.6 \text { to } 20 \mathrm{GHz} \\ & \pm 1.5 \text { to } 26.5 \mathrm{GHz} 1 \end{aligned}$	$\begin{aligned} & \pm 0.3 \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.6 \text { to } 20 \mathrm{GHz} \\ & \pm 1.5 \text { to } 26.5 \mathrm{GHz} \end{aligned}$
Maximum SWR (measured at - 20 dBm)	$\begin{aligned} & 1.15 \text { to } 4 \mathrm{GHz} \\ & 1.3 \text { to } 12.4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.15 \text { to } 4 \mathrm{GHz} \\ & 1.3 \text { to } 15 \mathrm{GHz} \\ & 1.7 \text { to } 18 \mathrm{GHz} \end{aligned}$	1.2 to 4.5 GHz 1.35 to 7 GHz 1.5 to 12.4 GHz 1.7 to 18 GHz	$\begin{aligned} & 1.2 \text { to } 4 \mathrm{GHz} \\ & 1.5 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 4 \mathrm{GHz} \\ & 1.5 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 4 \mathrm{GHz} \\ & 1.5 \text { to } 18 \mathrm{GHz} \\ & 2.2 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 4 \mathrm{GHz} \\ & 1.5 \text { to } 18 \mathrm{GHz} \\ & 2.2 \text { to } 26.5 \mathrm{GHz} \end{aligned}$
Low-level sensitivity ($\mathrm{mV} / \mu \mathrm{W}$)	>0.5	>0.5	>0.5	>0.5	>0.5	$\begin{aligned} & >0.5 \text { to } 18 \mathrm{GHz} \\ & >0.18 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	>0.5 to 18 GHz >0.18 to 26.5 GHz
Maximum operating input power	200 mW						
Typical short term maximum input power (<1 minute)	1 W	1 W	1 W	1 W	1 W	1 W	1 W
Noise	$<50 \mu \mathrm{~V}$						
Video impedance (nom)	$1.3 \mathrm{k} \Omega$						
RF bypass capacitance (nom)	50 pF	50 pF	50 pF	30 pF	30 pF	30 pF	30 pF
Output polarity	Negative						
Input connector	Type-N (m)	APC-7 (m)	SMA (m)	3.5 mm (m)	3.5 mm (m)	3.5 mm (m)	3.5 mm (m)
Output connector	BNC (f)	BNC (f)	BNC (f)	BNC (f)	SMC (m)	BNC (f)	SMC (m)

Options

Agilent model	423B	8470B	8472B	8473B	33330B	8473C	$33330 C$
Matched response ${ }^{2}$ (Option 001)	$\pm 0.2 \mathrm{~dB}$ to 12.4 GHz	$\pm 0.2 \mathrm{~dB}$ to 12.4 GHz $\pm 0.3 \mathrm{~dB}$ to 18 GHz	$\pm 0.2 \mathrm{~dB}$ to 12.4 GHz $\pm 0.3 \mathrm{~dB}$ to 18 GHz	$\begin{aligned} & \pm 0.2 \mathrm{~dB} \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.3 \mathrm{~dB} \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.2 \mathrm{~dB} \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.3 \mathrm{~dB} \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.2 \mathrm{~dB} \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.3 \mathrm{~dB} \text { to } 18 \mathrm{GHz} \\ & \pm 0.5 \mathrm{~dB} \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.2 \mathrm{~dB} \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.3 \mathrm{~dB} \text { to } 18 \mathrm{GHz} \\ & \pm 0.5 \mathrm{~dB} \text { to } 26.5 \mathrm{GHz} \end{aligned}$
Optimal square law load ${ }^{3}$	Option 002	Option 002	Option 002	Option 002		Option 002	
Positive polarity output	Option 003						
Connector		Option 012 Type-N (m) input connector	Option 100 OSSM (f) output connector				
Field replaceable detector elements standard:	00423-60003	08470-60012	08470-60012	08473-80001	33330-80003	08473-80004	33330-80006
Option 001	00423-60007		08470-60016	08473-80002	33330-80004	08473-80005	33330-80007
Option 002	00423-60005	08470-60014					
Option 003	00423-60004	08470-60013	08470-60013	08473-80003	$33330-80005$	08473-80006	$33330-80008$

${ }^{1}$ From a -3.3 dB linear slope beginning @ 20 GHz .
${ }^{2}$ Must order a quantity of 2 standard units and 2 Option 001s for a pair of detectors with matched frequency response.
${ }^{3}$ Defined as $\pm 0.5 \mathrm{~dB}$ from ideal square law response.

Agilent model	Length (Dim A)	Barrel diameter (Dim B)	Input connector diameter ($\operatorname{Dim} \mathrm{C}$)	Net weight	Shipping weight
Diagram 1 423B 8474B	$\begin{array}{\|l} 63 \mathrm{~mm}(2.47 \mathrm{in}) \\ 60 \mathrm{~mm}(2.36 \mathrm{in}) \\ \hline \end{array}$	$\begin{aligned} & 20 \mathrm{~mm}(0.78 \mathrm{in}) \\ & 19 \mathrm{~mm}(0.74 \mathrm{in}) \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \mathrm{~mm}(0.82 \mathrm{in}) \\ & 21 \mathrm{~mm}(0.82 \mathrm{in}) \\ & \hline \end{aligned}$	$\begin{aligned} & 114 \mathrm{~g}(4 \mathrm{oz}) \\ & 85 \mathrm{~g}(3 \mathrm{oz}) \\ & \hline \end{aligned}$	$\begin{aligned} & 454 \mathrm{~g}(16 \mathrm{oz}) \\ & 454 \mathrm{~g}(16 \mathrm{oz}) \\ & \hline \end{aligned}$
Diagram 2 8470B	62 mm (2.50 in)	19 mm (0.75 in)	22 mm (0.87 in)	114 g (4 oz)	454 g (16 0z)
Diagram 3 8471E 8474C	$\begin{aligned} & 39 \mathrm{~mm}(1.54 \mathrm{in}) \\ & 41 \mathrm{~mm}(1.62 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 9.3 \mathrm{~mm}(0.36 \mathrm{in}) \\ & 9.7 \mathrm{~mm}(0.38 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 7.9 \mathrm{~mm}(0.31 \mathrm{in}) \\ & 7.9 \mathrm{~mm}(0.31 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 39 \mathrm{~g}(1.4 \mathrm{oz}) \\ & 14 \mathrm{~g}(0.5 \mathrm{oz}) \end{aligned}$	$\begin{aligned} & 227 \mathrm{~g}(8 \mathrm{oz}) \\ & 227 \mathrm{~g}(8 \mathrm{oz}) \end{aligned}$
$\begin{aligned} & \text { Diagram } 4 \\ & 8472 B \\ & 8473 B \\ & 8473 C \\ & 8473 D \end{aligned}$	64 mm (2.50 in) 48 mm (1.89 in) 48 mm (1.89 in) 48 mm (1.89 in)	14 mm (0.56 in) 10 mm (0.39 in) 10 mm (0.39 in) 10 mm (0.39 in)	7.9 mm (0.31 in) 7.9 mm (0.31 in) 7.9 mm (0.31 in) 7.9 mm (0.31 in)	$\begin{aligned} & 57 \mathrm{~g}(2 \mathrm{oz}) \\ & 14 \mathrm{~g}(0.5 \mathrm{oz}) \\ & 14 \mathrm{~g}(0.5 \mathrm{oz}) \\ & 57 \mathrm{~g}(2 \mathrm{oz}) \\ & \hline \end{aligned}$	$\begin{aligned} & 454 \mathrm{~g}(16 \mathrm{oz}) \\ & 454 \mathrm{~g}(16 \mathrm{oz}) \\ & 454 \mathrm{~g}(16 \mathrm{oz}) \\ & 227 \mathrm{~g}(8 \mathrm{oz}) \\ & \hline \end{aligned}$
Diagram 5 8471D	63 mm (2.50 in)	16 mm (0.62 in)	14 mm (0.54 in)	$39 \mathrm{~g}(1.40 \mathrm{oz}$	454 g (16 oz)

Detectors

Detectors (continued)

Environmental specifications

Agilent 423B, 8470B, 8472B, 8473B, C, 33330B, C (LBSD)
Operating temperature: $\quad-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Except Agilent 423B: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$)
Vibration:
$20 \mathrm{~g} ; 80$ to 2000 Hz
Shock:
$100 \mathrm{~g}, 11 \mathrm{~ms}$
Agilent 8471D, E, 8473D, 8474B, C, E (PDBD)
Operating temperature: $\quad-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ (Except Agilent $8474 \mathrm{~B}: 0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$)
Temperature cycling:
(non-operating)
Vibration:
Shock:
Acceleration:
Altitude:
Salt atmosphere:
Moisture resistance:
RFI:
ESD:
$-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$; MIL-STD 883, Method 1010
0.6 inches D.A. 10 to $80 \mathrm{~Hz} ; 20 \mathrm{~g}, 80$ to 200 Hz ; MIL-STD 883, Method 2007
$500 \mathrm{~g}, 0.5 \mathrm{~ms}$; MIL-STD 883, Method 2002
500 g; MIL-STD 883, Method 2001
50,000 ft (15,240 m); MIL-STD 883, Method 1001
$48 \mathrm{hr}, 5 \%$ solution; MIL-STD 883, Method 1009
$25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, 95% RH; MIL-STD 883, Method 1004
MIL-STD 461B
10 discharges at 25 kV to the body, not to the center conductor

Agilent 83036C broadband directional detector

This broadband microwave power sampler operates in much the same way as a directional coupler and detector combination. Comprised of a resistive bridge and PDB diode, this broadband device offers excellent frequency, temperature, and square law response characteristics.

With a 10 MHz to 26.5 GHz frequency range, a single Agilent 83036C can be used in many applications where two directional couplers and detectors were once required.

The maximum SWR is 1.7 above 50 MHz on both the input and output ports. Directivity of 14 dB matches that of most miniature couplers currently available. The maximum insertion loss is 2.2 dB .

The Agilent 83036C has been used with great success as the sampling element for external leveling of broadband swept frequency sources. The detector's extended frequency range increases the usable band to 100 MHz to 26 GHz , giving the user full use of a broadband source with external leveling. Other uses include the internal leveling element for sources, and forward/reverse power monitoring.

Specifications ${ }^{1}$

Agilent model	Frequency range (GHz)	Frequency response (dB)	Max. SWR input/output (50Ω nom)	Maximum thru line loss (dB)	Low level sensitivity	Maximum input power ${ }^{1}$ (into 50Ω Load)	Maximum input power ${ }^{1}$ (into Open)	Input/output connector
83036C	0.01 to 26.5	± 1.0	1.7	2.2	$18 \mu \mathrm{~V} / \mu \mathrm{W}$	32 dBm	21 dBm	3.5 mm (f)

1 With 2:1 source match.

Environmental specifications

Non-operating temperature:
-65 to $+150^{\circ} \mathrm{C}$
Random vibration: In accordance with MIL-STD-883, Method 2026, Condition IIA: 5.9 g, 50 to 2000 Hz .

Shock: In accordance with MIL-STD-883, Method 2002, Condition B: 1500 g for 0.5 ms .

Moisture resistance: In accordance with MIL-STD-883, Method 1004: 10 cycles, -10 to $+65^{\circ} \mathrm{C}$ at 90 to $100 \% \mathrm{RH}$.

Altitude: In accordance with MIL-STD-883, Method 1001, Condition C: 50,000 ft. operating altitude.

Directional Couplers and Bridges

Directional Couplers and Bridges
Single- and Dual-Directional Couplers, 90° Hybrid Coupler66
RF Bridges 73

Directional Couplers and Bridges

Applications

Directional couplers are general purpose tools used in RF and microwave signal routing for isolating, separating or combining signals. They find use in a variety of measurement applications:

- Power monitoring
- Source leveling
- Isolation of signal sources
- Swept transmission and reflection measurements

Key specifications

The key specifications for a directional coupler depend on its application. Each of them should be carefully evaluated to ensure that the coupler meets its intended use.

- Directivity
- SWR
- Coupling coefficient
- Transmission loss
- Input power

Directivity

Directivity is a measure of how well the coupler isolates two opposite-travelling (forward and reverse) signals. In the case of measuring reflection coefficient (return loss) of a device under test, directivity is a crucial parameter in the uncertainty of the result. Figure 1 shows how the reflection signal, E_{r}, is degraded by the undesired portion of the incident signal D_{2}. And since the undesired signal, D_{2}, combines with the reflected signal as a phasor, the error in the measured signal Em_{2} can only be compensated or corrected on a broadband basis using vector analyzers.

Because the reverse-coupled signal is very small, it adds a negligible amount of uncertainty when measuring large reflections. But as the reflected signal becomes smaller, the reverse-coupled signal becomes more significant.

For example, when the return loss in dB equals the value of directivity, the measurement error can be between -6 to +8 dB . The higher the directivity specified in dB , the higher the measurement accuracy. The effect of the directivity error on the forward-coupler output, $E m_{1}$, is less important because the desired signal is usually a large value. When Agilent couplers are used for power monitoring and leveling, directivity is less important than coupling coefficient flatness.

$\begin{array}{ll}\mathrm{K}_{1} \text { and } \mathrm{K}_{2}: & \text { Coupling coefficients }(\mathrm{dB}) \\ \mathrm{D}_{1} \text { and } \mathrm{D}_{2}: & \text { Directivities }(\mathrm{dB}) \\ \mathrm{E}_{\text {in }}= & \text { Input signal } \\ \mathrm{E}_{\mathrm{r}}= & \text { Reflected signal from DUT } \\ \mathrm{E}_{\mathrm{m}}= & \text { Measured signal (includes directivity error) }\end{array}$
Figure 1. Effect of directivity on reflection measurement.

Directional Couplers and Bridges

SWR

For many applications, coupler SWR is important to minimize low mismatch errors and to improve measurement accuracy. For example, when making swept reflection measurements, it is customary to set a full reflection (0 dB return loss) reference by connecting a short at the test port of the coupler. Some of the reflected signal re-reflects due to the output port (test port) SWR. This re-reflected signal goes through a wide phase variation because of the width of the frequency sweep, adding to and subtracting from the reflected signal. This phase variation creates a ripple in the full reflection (0 dB return loss) reference. The magnitude of the re-reflected signal, and thus the measurement uncertainty, can be minimized by selecting couplers with the lowest SWR.

Coupling coefficient

In power monitoring and leveling, the most desired specification is a highly accurate and flat coupling value, because the coupling factor directly affects the measurement data. For wideband leveling, the coupling factor directly influences the flatness of the output power. Coupling values of 10 and 20 dB are most common but for high power and pulsed systems, there can be a need for 40 dB coupling.

In reflection measurements, coupling factor is less important than directivity and SWR, since both the forward and reverse coupling elements are usually identical, and so the variation of coupling factors match versus frequency.

Transmission loss

Transmission loss is the total loss in the main line of a directional coupler, and includes both insertion loss and coupling loss. For example, for a 10 dB coupler, 10% of the forward signal is coupled off, which represents approximately 0.4 dB of signal loss added to the inherent losses in the main transmission line.

Transmission loss is usually not important at low frequencies where most swept sources have sufficient available power. However, in the millimeter ranges, power sources are limited and lower loss devices become significant. In general, broadband couplers have transmission losses on the order of 1 dB . On the other hand, directional bridges, which are sometimes used in place of couplers for reflection/transmission measurements, have insertion losses of at least 6 dB . This loss directly subtracts from the dynamic range of the measurement.

Input power

High power handling characteristics of directional couplers are critical when used for monitoring pulsed power systems. Most couplers designed for test and measurement applications are not ideal for system powers in the kilowatt range. One reason is that the coupler's secondary transmission line often has an internal termination that limits the coupler's mainline power handling capability. A second reason is the maximum power rating of the connectors. Such models have a power rating from 20 to 50 W average.

Directional Couplers and Bridges

Agilent 87300/301 series, 87310B

Agilent 772/3D

Agilent 87300/301 series directional couplers

This line of compact, broadband directional couplers is ideal for signal monitoring, or, when combined with a coaxial detector, for signal leveling. The Agilent 8474 series coaxial detectors are recommended if output detection is desired. A broad offering of products is available with frequencies up to 50 GHz .

Agilent 87310B hybrid coupler

The Agilent 87310B is a 3 dB hybrid coupler, intended for applications requiring a 90 degree phase difference between output ports. In that sense, it is different from typical power dividers and power splitters, which have matched signal phase at their output ports.

Agilent 773D directional coupler Agilent 772D dual-directional coupler

These high-performance couplers are designed for broadband swept measurements in the 2 to 18 GHz range. The Agilent 773D is ideal for leveling broadband sources when used with an Agilent 8474B detector. (Also, see the Agilent 83036C directional detector). For reflectometer applications, the Agilent 772D dual coupler is the best coupler to use with Agilent power sensors and power meters (such as the Agilent 438A dual power meter). Forward and reverse power measurements on transmitters, components, or other broadband systems are made simpler by using the Agilent 772D. The broadband design allows the use of a single test setup and calibration for tests spanning the entire 2 to 18 GHz frequency range.

Directional Couplers and Bridges

Agilent 775D

Agilent 776D

Agilent 775/6/7/8D dual-directional couplers

These couplers cover a frequency spread of more than 2:1, each centered on one of the important VHF/UHF bands. Agilent 778D covers a multi-octave band from 100 to 2000 MHz . With their high directivity and mean coupling accuracy of $\pm 0.5 \mathrm{~dB}$, these are ideal couplers for reflectometer applications. Power ratings are 50 W average, 500 W peak.

Agilent 11691D and 11692D directional couplers

Agilent 11691D is a single coupler for 2 to 18 GHz with a 20 dB coupling factor. With 30 dB directivity to 8 GHz and 26 dB to 18 GHz , it is useful for broadband reflectometry. It features many connector options to match test device requirements. Agilent 11692 D is a dual-directional coupler with the same performance specifications as the Agilent 11691D. Dual couplers make it possible to measure both reflection and transmission parameters of a device under test at the same time.

Agilent 11691D

Agilent 11692D

Directional Couplers and Bridges

Directional coupler selection guide

Specifications

Agilent model	Frequency range (GHz)	Nominal coupling \& variation (dB)	Directivity (dB)	Maximum SWR	Insertion loss (dB)	Power rating average, peak
87300B	1 to 20	10 ± 0.5	>16	1.35	<1.5	$20 \mathrm{~W}, 3 \mathrm{~kW}$
87300C	1 to 26.5	10 ± 1.0	$\begin{aligned} & >14 \text { to } 12.4 \mathrm{GHz} \\ & >12 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.35 \text { to } 12.4 \mathrm{GHz} \\ & 1.5 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.2 \text { to } 12.4 \mathrm{GHz} \\ & <1.7 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$20 \mathrm{~W}, 3 \mathrm{~kW}$
$\begin{aligned} & \text { 87300C } \\ & \text { Option } 020 \end{aligned}$	1 to 26.5	20 ± 1.0	>14	1.4	<1.2	$20 \mathrm{~W}, 3 \mathrm{~kW}$
87300D	6 to 26.5	10 ± 0.5	>13	1.40	<1.3	$20 \mathrm{~W}, 3 \mathrm{~kW}$
87301B	10 to 46	10 ± 0.7	>10	1.80	<1.9	$20 \mathrm{~W}, 3 \mathrm{~kW}$
87301C	10 to 50	10 ± 0.7	>10	1.80	<1.9	$20 \mathrm{~W}, 3 \mathrm{~kW}$
87301D	1 to 40	13 ± 1.0	$\begin{aligned} & >14 \text { to } 20 \mathrm{GHz} \\ & >10 \text { to } 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.5 \text { to } 20 \mathrm{GHz} \\ & 1.7 \text { to } 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.2 \text { to } 20 \mathrm{GHz} \\ & <1.9 \text { to } 40 \mathrm{GHz} \end{aligned}$	$20 \mathrm{~W}, 3 \mathrm{~kW}$
87301E	2 to 50	10 ± 1.0	$\begin{aligned} & >13 \text { to } 26.5 \mathrm{GHz} \\ & >10 \text { to } 50 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.5 \text { to } 26.5 \mathrm{GHz} \\ & 1.8 \text { to } 50 \mathrm{GHz} \end{aligned}$	<2.0	$20 \mathrm{~W}, 3 \mathrm{~kW}$
772D ${ }^{2}$	2 to 18	20 ± 0.9	$\begin{aligned} & >30 \text { to } 12.4 \mathrm{GHz} \\ & >27 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.28 \text { to } 12.4 \mathrm{GHz} \\ & 1.4 \text { to } 18 \mathrm{GHz} \end{aligned}$	<1.5	$50 \mathrm{~W}, 250 \mathrm{~W}$
773D ${ }^{2}$	2 to 18	20 ± 0.9	$\begin{aligned} & >30 \text { to } 12.4 \mathrm{GHz} \\ & >27 \text { to } 18 \mathrm{GHz} \end{aligned}$	1.2	<0.9	$50 \mathrm{~W}, 250 \mathrm{~W}$
775D ${ }^{3}$	0.45 to 0.94	20 ± 1	>40	1.15	<0.40	$50 \mathrm{~W}, 500 \mathrm{~W}$
776D ${ }^{3}$	0.94 to 1.9	20 ± 1	>40	1.15	<0.35	$50 \mathrm{~W}, 500 \mathrm{~W}$
777D ${ }^{3}$	1.9 to 4	20 ± 0.4	>30	1.2	<0.75	$50 \mathrm{~W}, 500 \mathrm{~W}$
778D	0.1 to 2	20 ± 1.5	$\begin{aligned} & >36 \text { to } 1 \mathrm{GHz}^{4} \\ & >32 \text { to } 2 \mathrm{GHz}^{4} \end{aligned}$	1.1	<0.60	$50 \mathrm{~W}, 500 \mathrm{~W}$
11691D	2 to 18	20 ± 1.0	$\begin{aligned} & >30 \text { to } 8 \mathrm{GHz} \\ & >26 \text { to } 18 \mathrm{GHz} 6 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.3 \end{aligned}$	<2.0	$50 \mathrm{~W}, 250 \mathrm{~W}$
11692D	2 to 18	20 ± 1 incident to test port	$\begin{aligned} & >30 \text { to } 8 \mathrm{GHz} \\ & >26 \text { to } 18 \mathrm{GHz} 6 \end{aligned}$	$\begin{aligned} & 1.3 \text { to } 12.4 \mathrm{GHz} \\ & 1.4 \text { to } 18 \mathrm{GHz} \end{aligned}$	<1.5	$50 \mathrm{~W}, 250 \mathrm{~W}$

[^7][^8]Agilent 87310B specifications

Frequency range	1 to 18 GHz
Coupling	3 dB
Amplitude imbalance	$\pm 0.5 \mathrm{~dB}$ at each port, centered at -3 dB
Phase imbalance	± 10 Degrees
Isolation	$>17 \mathrm{~dB}$
Maximum SWR	1.35
Insertion loss	$<2.0 \mathrm{~dB}$
Power rating Average Peak	20 W
Connectors	3 kW
Weight in grams (oz)	$\mathrm{SMA}(\mathrm{f})$

Directional Couplers and Bridges

Outline drawings

Agilent 772D

Agilent 773D

Agilent 775D

Agilent 776D

Agilent 777D

Dimensions are in mm (inches) nominal, unless otherwise specified.

Directional Couplers and Bridges

Single- and Dual-Directional Couplers, $9 \mathbf{0 0}^{\circ}$ Hybrid Coupler (continued)

Agilent 778D

Agilent 87300B

Agilent 87300C

Agilent 87300D, 87301B, 87301C

Agilent model	Connector type	C dimension
$\mathbf{8 7 3 0 0 D}$	$3.5 \mathrm{~mm}(\mathrm{f})$	$12.2(0.48)$
$\mathbf{8 7 3 0 1 B}$	$2.9 \mathrm{~mm}(\mathrm{f})$	$9.7(0.38)$
87301C	$2.4 \mathrm{~mm}(\mathrm{f})$	$28.4(1.0)$

Dimensions are in mm (inches) nominal, unless otherwise specified.

Directional Couplers and Bridges

Agilent 87301D, E

Connector Type	C Dimension
$2.4 \mathrm{~mm}(\mathrm{f})$	$9.7(0.38)$
$2.92 \mathrm{~mm}(\mathrm{f})$	$9.7(0.38)$

Agilent 87310B

Agilent model	Standard connector and options
$\begin{aligned} & \text { 772D } \\ & \text { STD } \\ & \text { Option } 001 \end{aligned}$	Primary Line: APC-7, APC-7 Auxiliary arm: $\mathrm{N}(\mathrm{f})$ Primary Line: $N(f), N(f)$ Auxiliary arm: $\mathrm{N}(\mathrm{f})$
773D STD/101 Option 001 Option 010 Option 002	Primary Line: APC-7, APC-7 Auxiliary arm: $N(f)$ Primary Line: $N(f), N(f)$ Auxiliary arm: $N(f)$ Primary Line: $N(m), N(f)$ Auxiliary arm: $N(f)$ Primary Line: $N(f), N(m)$ Auxiliary arm: $N(f)$
$\begin{aligned} & \text { 775D - 777D } \\ & \text { STD } \end{aligned}$	Primary Line: $N(m), N(f)$ Auxiliary arm: $N(f), N(f)$
778D STD Option 011 Option 011	Primary Line: $N(f), N(m)$ Auxiliary arm: $N(f), N(f)$ Primary Line: APC-7, N(f) Auxiliary arm: $\mathrm{N}(\mathrm{f}), \mathrm{N}(\mathrm{f})$ Primary Line: $\mathrm{N}(\mathrm{m}), \mathrm{N}(\mathrm{f})$ Auxiliary arm: $N(f), N(f)$
$\begin{gathered} \text { 11691D } \\ \text { STD } \end{gathered}$	Primary Line: APC-7, APC-7 Auxiliary arm: $\mathrm{N}(\mathrm{f})$
11692D STD Option 001 Option 002 Option 003 Option 004	Primary Line: $\mathrm{N}(\mathrm{f})$, APC-7 Auxiliary arm: $N(f), N(f)$ Primary Line: $N(f), N(f)$ Auxiliary arm: $\mathrm{N}(\mathrm{f}), \mathrm{N}(\mathrm{f})$ Primary Line: $N(f), N(m)$ Auxiliary arm: $\mathrm{N}(\mathrm{f}), \mathrm{N}(\mathrm{f})$ Primary Line: $\mathrm{N}(\mathrm{f})$, APC-7 Auxiliary arm: APC-7, APC-7 Primary Line: APC-7, APC-7 Auxiliary arm: APC-7, APC-7
87300B	Primary Line: SMA(f), SMA (f) Auxiliary arm: SMA(f)
87300C	Primary Line: $3.5 \mathrm{~mm}(\mathrm{f}), 3.5 \mathrm{~mm}(\mathrm{f})$ Auxiliary arm: $3.5 \mathrm{~mm}(\mathrm{f})$
87300D	Primary Line: $3.5 \mathrm{~mm}(\mathrm{f}), 3.5 \mathrm{~mm}(\mathrm{f})$ Auxiliary arm: $3.5 \mathrm{~mm}(\mathrm{f})$
87301B	Primary Line: $2.92 \mathrm{~mm}(\mathrm{f}), 2.92 \mathrm{~mm}(\mathrm{f})$ Auxiliary arm: $2.92 \mathrm{~mm}(\mathrm{f})$
87301C	Primary Line: $2.4 \mathrm{~mm}(\mathrm{f}), 2.4 \mathrm{~mm}(\mathrm{f})$ Auxiliary arm: $2.4 \mathrm{~mm}(\mathrm{f})$
87301D Option 240 Option 292	Primary Line: $2.4 \mathrm{~mm}(\mathrm{f}), 2.4 \mathrm{~mm}(\mathrm{f})$ Auxiliary arm: $2.4 \mathrm{~mm}(\mathrm{f})$ Primary Line: $2.92 \mathrm{~mm}(\mathrm{f}), 2.92 \mathrm{~mm}(\mathrm{f})$ Auxiliary arm: $2.92 \mathrm{~mm}(f)$
87301E	Primary Line: $2.4 \mathrm{~mm}(\mathrm{f}), 2.4 \mathrm{~mm}(\mathrm{f})$ Auxiliary arm: $2.4 \mathrm{~mm}(f)$
87310B	Primary Line: SMA(m), SMA(m) Auxiliary arm: SMA(m)

RF bridges

These high directivity RF bridges are ideal for accurate reflection measurements and signal-leveling applications. They combine the directivity and broadband frequency range of directional bridges and the low insertion loss and flat coupling factor of directional couplers. These bridges can be used with the Agilent 8711A RF scalar network analyzer, the Agilent 8753 family of RF vector analyzers as well as Agilent spectrum analyzers.

Agilent 86205A

This 50 ohm bridge offers high directivity and excellent port match from 300 kHz to 6 GHz . Directivity is 30 dB to 3 GHz . Coupling factor is 16 dB with a slope of +0.15 dB per GHz to 3 GHz . Insertion loss is 1.5 dB with a slope of +0.1 dB per GHz . Connectors are type-N (f).

Agilent 86207A

This 75 ohm type-N bridge has high directivity and excellent port match from 300 kHz to 3 GHz . It is used for external reflection measurements or coupling signal from main path. Directivity is 30 dB to $5 \mathrm{MHz}, 40 \mathrm{~dB}$ to $1.3 \mathrm{GHz}, 35 \mathrm{~dB}$ to 2 GHz , and 30 dB to 3 GHz . Coupling factor is 16 dB with a slope of +0.15 dB per GHz to 3 GHz . Insertion loss is 1.5 dB with a slope of +0.1 dB per GHz . Connectors are type-N (f).

Agilent 86205/207A

| Agilent model | | Agilent 86205A |
| :--- | :--- | :--- | Agilent 86207A

Frequency Meter

Overview

Passive frequency meters are intended for moderate (+0.05\%) accuracy applications in microwave measurement setups. Reaction cavity types are usually best for this purpose since they permit full power flow down the transmission line except at the precise tuned frequency. At the tuned frequency, a slight amount of power (1.5 dB dip) is absorbed by the cavity which is visible on an oscilloscope or SWR meter display.

Key specifications

- SWR
- Insertion loss
- Accuracy
- Turning dip
- Spurious response

Low SWR and insertion loss are important to provide flat power transmission off-frequency. The Agilent frequency meter features broadband coupling loops that are very flat versus frequency. Accurate calibration is maintained by attention to thermal considerations and metal selection in design. Long effective scales are provided with a highly-readable spiral dial.

A constant tuning dip ensures readable indications at all frequencies in the band. The Agilent frequency meter is carefully designed and tested for uniformity of tuning dip. Likewise, spurious responses are undesirable since two responses near the same input frequency cause confusion. Although this meter covers more than 1 octave, the design uses a loaded coaxial cavity that prevents resonance at $3 / 4 \lambda$ tuned frequencies providing low-error operation.

Agilent 537A

Agilent 537A frequency meter

This direct-reading frequency meter measures frequencies from 3.7 to 12.4 GHz quickly and accurately. Its long scale length and numerous calibration marks provide high resolution. This is particularly useful when measuring frequency differences or small frequency changes. Frequency is read directly in GHz so interpolation or charts are not required.

The instrument comprises a special transmission section with a high- 0 resonant cavity tuned by a choke plunger. A $1-\mathrm{dB}$ or greater dip in output indicates resonance; virtually full power is transmitted off resonance. Tuning is by a precision lead screw, spring-loaded to eliminate backlash.

Resolution is enhanced by a long, spiral-scale calibrated in small frequency increments. Resettability is extremely good, and all frequency calibrations are visible so that the measurement point is directly indicated. Overall accuracy of the frequency meter includes allowance for 0 to 100 percent relative humidity and temperature variation from 13 to $33^{\circ} \mathrm{C}$. There are no spurious modes or resonances.

Specifications

Model	Frequency range	Reflection coefficient off resonance	Dial accuracy	Overall accuracy	Minimum dip at resonance	Calibration increment	Connector	Dimensions mm (in)	Shipping weight kg (lb)
537A	3.7 to 12.4 GHz	0.33 (2.0 SWR, 9.5 dB return loss)	0.100\%	0.170\%	1 dB	10 MHz	Type-N (f)	$\begin{aligned} & 118 \times 146 \times 89 \\ & (4.6 \times 5.8 \times 3.5) \end{aligned}$	2.3 (5)

High Frequency Probe

Agilent 85024A high frequency probe

The Agilent 85024A high frequency probe offers excellent performance. The probe employs a GaAs IC to obtain extremely low input capacitance of only 0.7 pF shunted by $1 \mathrm{M} \Omega$ of resistance. Because of this low input capacitance, high frequency probing is possible without adversely loading the circuit under test. Also, the $1 \mathrm{M} \Omega$ shunt resistance guarantees minimal circuit loading a lower frequencies. Since the probe has excellent sensitivity, it is well-suited for use with analyzers offering exceptional dynamic range. The 85024A is an excellent accessory for high frequency test equipment, especially Agilent RF network or spectrum analyzers which supply probe power from the front panel.

Spectrum analysis

Troubleshooting RF and IF signal paths to identify problem areas in a system is convenient and accurate with an 85024A and a spectrum analyzer. Measurements of frequency, power, modulation, distortion, conversion loss, and spectral purity are possible within a circuit. High sensitivity and low distortion levels ensure the probe's ability to detect small signals or search for spurious responses. In fact, the sensitivity of most 85024A applications is limited only by the noise floor of the spectrum analyzer itself. Add a tracking generator to easily perform swept in-circuit measurements.

Network analysis

When used with a network analyzer, this versatile probe makes it easy to measure the gain, attenuation, phase linearity, or group delay of individual circuit stages. Also, investigate multi-stage circuits to rapidly determine the location of faults in a system. Low input capacitance and high shunt resistance minimizes the loading to the circuit under test. Excellent frequency response and unity gain of the Agilent 85024A guarantee high accuracy in swept measurements.

Specifications

Performance parameter		Value
Input capacitance	$<0.7 \mathrm{pF}$	N
Input resistance	$1 \mathrm{M} \Omega$	N
Bandwidth	300 kHz to 3 GHz	
(usable to 100 kHz)		

[^9]
Impedance Matching Adapters

Impedance Matching Adapters

Overview

Impedance matching adapters are instrument grade tools used in RF and microwave signal matching that adapt 50 -ohm impedance to 75 -ohm impedance and vice versa. They are used in measurement setups that require impedance conversion.

Agilent 11852B impedance matching adapter

The 11852B $50 \Omega / 75 \Omega$ minimum loss adapter is a 50Ω to 75Ω or 75Ω to 50Ω impedance converter with type-N connectors. Use the Agilent 11852B minimum loss pad with 75Ω network analyzers, such as $8753 \mathrm{ES}-075$, and 50Ω network analyzers, such as 8753 A. Or use it in any application that requires $50 \Omega / 75 \Omega$ impedance conversion with low SWR.

Agilent 11852B

11852B specifications

| Agilent model | | Type | Frequency range (GHz) | Return loss (VSWR) | Insertion loss (dB) |
| :--- | :--- | :--- | :--- | :--- | :--- | Max input power (mW)

Power Limiters

Agilent 11930A/B

Agilent 11930A/B power limiters

The Agilent 11930A/B limiters provide input protection for a variety of RF and microwave instrumentation. For example, the input circuits of network analyzers may be protected for inputs up to 6 watts peak or 3 watts average power using the Agilent 11930A. The Agilent 11930B provides the same protection to spectrum analyzers and sources. At even greater power levels, failure mode for the limiter is either an open circuit or a short circuit to ground, thereby protecting the instrument from damage.

Features

The Agilent 11930A is furnished with an APC-7 connector and the Agilent 11930B has a type-N connector. The limiters offer low insertion loss and linear operation at low input levels while providing protection against transients or short duration overloads. In Figure 1 typical data for output power versus input power is shown for Agilent 11930A/B. Figures 2 and 3 illustrate typical insertion loss and return loss.

Figure 1. Agilent 11930A/B typical output power versus input power.

Figure 2. Agilent 11930A typical insertion and return loss versus frequency.

Figure 3. Agilent 11930B typical insertion and return loss versus frequency.

Agilent N9355/6 series power limiters

The N9355/6 series power limiters are designed for input protection of electronic components within the fields of communications, telemetry, radar systems and high frequency instrumentation. These 4 models provide customers with a choice of operating frequency range and limiting threshold to suit their applications. Combining with excellent insertion loss and return loss, these limiters will safe-guard your investments from damage due to excess RF power, DC transients or Electro-Static-Discharge (ESD).

Features

The N9355/6 series limiters also include a DC block integrated into both input and output ports that will filter signals below 10 MHz and pass signals up to 26.5 GHz .

Specifications

Agilent model	11867A	11930A	11930B	$\begin{array}{ll}\text { N9355B } & \text { N9356B } \\ 50 \Omega \text { nominal } & \\ \end{array}$		N9355C	N9356C		
Impedance	50Ω nominal								
Frequency range	DC to 1.8 GHz	DC to 6 GHz	5 MHz to $6.5 \mathrm{GHz}{ }^{1}$			10 MHz to 18 GHz		10 MHz to 26.5 GHz	
Frequency response Insertion loss	$<0.75 \mathrm{~dB}$	$\begin{aligned} & <1.0 \mathrm{~dB} \text { DC to } 3 \mathrm{GHz} \\ & <1.5 \mathrm{~dB} 3 \text { to } 6 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.0 \mathrm{~dB} 16 \mathrm{MHz} \text { to } 3 \mathrm{GHz}^{2} \\ & <1.5 \mathrm{~dB} 3 \text { to } 6.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.5 \mathrm{~dB} 10 \mathrm{MHz} \text { to } 7 \mathrm{GHz} \\ & <1.8 \mathrm{~dB} 7 \text { to } 18 \mathrm{GHz} \end{aligned}$		$<1.5 \mathrm{~dB} 10 \mathrm{MHz}$ to 7 GHz $<1.8 \mathrm{~dB} 7$ to 18 GHz $<2.0 \mathrm{~dB} 18$ to 22 GHz $<2.5 \mathrm{~dB} 22$ to 26.5 GHz			
Return loss	$>20 \mathrm{~dB}$	$>22 \mathrm{~dB} 30 \mathrm{kHz}$ to 3 GHz $>20 \mathrm{~dB} 3$ to 6 GHz	$>21 \mathrm{~dB} 16$ MHzto 3 GHz ${ }^{2}$ $>17 \mathrm{~dB} 3$ to 6.5 GHz	$>15 \mathrm{~dB} 30$ to $100 \mathrm{MHz}^{3}$ $>20 \mathrm{~dB} 100 \mathrm{MHz}$ to 10 GHz $>15 \mathrm{~dB} 10$ to 18 GHz		$>15 \mathrm{~dB} 30$ to $100 \mathrm{MHz}^{3}$ $>20 \mathrm{~dB} 100 \mathrm{MHz}$ to 10 GHz $>15 \mathrm{~dB} 10$ to 18 GHz			
Maximum continuous RF input power	10 Watts	3 Watts	3 Watts	1 Watt	6 Watts	1 Watt	4 Watts		
Limiting threshold	0 dBm	30 dBm typical	30 dBm typical	10 dBm typical	25 dBm typical	10 dBm typical	25 dBm typical		
Maximum DC voltage	N/A	30 V							
Maximum DC current	N/A	350 mA	N/A	N/A	N/A	N/A	N/A		
Input/output connectors	Type-N	APC-7 (7 mm)	Type-N	Type-N	Type-N	3.5 mm	3.5 mm		

Notes:
Supplemental characteristics are intended to provide information useful in applying the instrument by giving typical, but non-warranted, performance parameters. These are denoted as "typical", or "nominal".

${ }^{1} 6$ to 6.5 GHz , typical.

${ }^{2} 5$ to 16 MHz insertion and return loss limited by internal blocking capacitor.
${ }^{3} 10$ to 30 MHz return loss specification is 8.5 dB .

Power Dividers and Splitters

Power Dividers and Splitters

Agilent 11636A, B power dividers

These power dividers provide good match and excellent tracking characteristics from DC to 26.5 GHz . Power dividers are recommended for applications such as transmission line fault testing, and power combining. They are not recommended for ratio and leveling applications.

Agilent 11636A

Dimensions are in mm (inches) nominal, unless otherwise specified.

Agilent 11636B

Dimensions are in mm (inches) nominal, unless otherwise specified.

Agilent 87302/303/304C hybrid power dividers

These power dividers are designed for power splitting applications that require minimal insertion loss and high isolation between ports. They are available in three models that cover multi-octave bands to 26.5 GHz. Models with narrower frequency coverage have less insertion loss. Hybrid dividers have insertion loss between the main line and output port which is 1 to 2 dB less than equivalent resistive power splitters. Designed for critical signal processing applications, phase and amplitude tracking between the two output ports is controlled and specified.

Power divider selection guide

Connector type								Frequency range
Input	Output	DC to 18 GHz	DC to 26.5 GHz	0.5 to 26.5 GHz	1 to 26.5 GHz	2 to 26.5 GHz		
N-Type (m)	N-Type (f)	11636 A						
$3.5 \mathrm{~mm}(\mathrm{f})$	$3.5 \mathrm{~mm}(\mathrm{f})$		11636 B	87302 C	87303 C	87304 C		

Specifications

| Agilent
 model | Frequency
 range
 (GHz) | Max.
 SWR | Maximum
 issertion
 loss (dB) | Minimum
 isolation
 (dB) | Maximum
 amplitude
 tracking (dB) | Maximum
 (dhase
 tracking (deg) $\mathbf{1}^{\mathbf{1}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 1 6 3 6 A}$ | DC to 18 | 1.35 | 6.0 typ. ${ }^{2}$ | | 0.5^{3} | $\pm 2^{\circ}$ typ. |
| $\mathbf{1 1 6 3 6 B}$ | DC to 26.5 | 1.29 | 7.5 | | 0.25^{3} | $\pm 2^{\circ}$ typ. |
| 87302C | 0.5 ST | 1.45 | 1.5 | 19 | 0.3 | 6 |
| | 26.5 ST | 1.60 | 1.9 | 19 | 0.5 | 10 |
| 87303C | 1.0 to 18 | 1.45 | 1.2 | 19 | 0.3 | 6 |
| | 18 to 26.5 | 1.60 | 1.6 | 21 | 0.5 | 10 |
| 87304C | 2.0 to 18 | 1.45 | 1.1 | 19 | 0.3 | 6 |
| | 18 to 26.5 | 1.60 | 1.4 | 18 | 0.5 | 10 |

Power Rating: 10 watts $87302 C / 3 C / 4 C, 1$ watt CW 11636A/B, (2:1 maximum load SWR)
Connectors: 3.5 mm (f), (SMA compatible)
Weight: $170 \mathrm{~g}(6 \mathrm{oz})$ net, $340 \mathrm{~g}(12 \mathrm{oz})$ shipping
${ }^{1}$ Amplitude and phase tracking are the ratio of one output to the other in $d B$ or degrees, respectively.
${ }^{2} 5.8$ to 7.2 dB up to 10 GHz ; 5.8 to 7.5 dB up to 18 GHz .
${ }^{3}$ at 18 GHz .

Agilent 87302/303/304C

Agilent model	A	B	C
$\mathbf{8 7 3 0 2 C}$	196.85	28.702	139.7
	(7.75)	(1.13)	(5.50)
$\mathbf{8 7 3 0 3 C}$	105.41	26.162	2.10
	(4.15)	(1.03)	(53.34)
$\mathbf{8 7 3 0 4 C}$	57.15	28.702	0.00
	(2.25)	(1.13)	(0.00)

Dimensions are in mm (inches) nominal, unless otherwise specified.

Agilent 11667A, B power splitters

These power splitters feature excellent match and tracking between outputs, operating from DC to 26.5 GHz. Power splitters are recommended for external source leveling and ratio measurements.

Agilent 11667B

Dimensions are in mm (inches) nominal, unless otherwise specified.

Agilent 11667C

Agilent 11667C power splitter

This two-resistor power splitter is recommended for applications that require external source leveling, or for ratio measurements. It covers the entire DC to 50 GHz frequency band by use of 2.4 mm connectors and advanced micro-circuitry for the resistive components. These two-resistor type splitters provide excellent output SWR at the auxiliary arm when used for source leveling or ratio measurement applications. The tracking between output arms over a frequency range from DC to 50 GHz allows wideband measurements to be made with a minimum of uncertainty.

Power Dividers and Splitters

Power splitter selection guide

Connector type	Frequency range			
Input	Output	DC to 18 GHz	DC to 26.5 GHz	DC to 50 GHz
N-Type (f)	N-Type (f)	11667A		
N-Type (m)	N-Type (f)	11667A Option 001		
N-Type (f)	APC 7	11667A Option 002		
3.5 mm (f)	3.5 mm (f)		11667B	
2.4 mm (f)	2.4 mm (f)			11667C

Specifications

Agilent model	Frequency range	Equivalent output SWR (nominal 50Ω)	Maximum input power	Nominal insertion loss (input to either output)	Tracking between any two ports	Connectors	Shipping weight (kg) lb
11667A Option 001 Option 002	DC to 18.0 GHz	1.10: DC to 4 GHz 1.20: DC to 8 GHz 1.33: DC to 18 GHz	0.5 W	7 dB	0.20 dB to 8 GHz 0.25 dB to 18 GHz	N (f) all ports Option 001: $\mathrm{N}(\mathrm{m})$ in, $\mathrm{N}(\mathrm{f})$ out Option 002: N (f) in, APC-7 out	0.2 (0.5)
11667B	DC to 26.5 GHz	1.22	0.5 W	7 dB	$<0.25 \mathrm{~dB}$	3.5 mm (f) all ports	0.14 (0.3)
11667C	DC to 50 GHz	1.65	0.5 W	8.5 dB	$<0.40 \mathrm{~dB}$	2.4 mm (f) all ports	0.14 (0.3)

Switches

Switches 90
SPDT Switch 95
Bypass Switch 103
Low Profile Multiport Switch 110
High Performance Multiport Switch 116
High Performance Transfer Switch 120
High Performance MatrixSwitch125

Switches

Applications

RF/microwave switches find use in a wide variety of signal routing applications for test and measurement systems. Typical applications include:

- Selection of multiple signal sources to one output
- Selection of multiple input signals to one measurement instrument
- Transfer switching to insert or remove a device in a signal path
- Matrix switching of multiple inputs and outputs

Technology

Agilent electromechanical coaxial switches feature low insertion loss, high isolation, broadband performance, long life and exceptional repeatability. Agilent coaxial switches are all designed with an "edge-line" coaxial structure. This transmission line structure provides for movement of the edge-line center conductor between two fixed, continuous ground planes. The main advantage of this innovation is that the moving contacts can be easily activated, yet maintain high isolation and low insertion loss.

The RF contact configuration is designed for controlled wiping action. Since the outer conductor is not part of the switching function, repeatability and life are enhanced. The switching action occurs typically within 15 to 30 milliseconds, after which permanent magnets latch the contacts to retain the new switch position.

The Agilent 87104/106 and 87204/206 series of switches use optoelectronic sensing to provide the coil current interrupt function. Since no mechanical contacts are involved in this function, the switch reliability is improved.

Key specifications

- Frequency range
- Input power
- Insertion loss
- Isolation
- SWR
- Repeatability
- Life

Frequency range

One of the main advantages of electromechanical switches is that they transmit signals all the way down to DC. The top frequency limits are set by the size of the coaxial structure and connectors. Various Agilent models are available up to 50 GHz . Parameters such as insertion loss, isolation and SWR behave in a predictable manner. Typically, these parameters will linearly degrade at higher frequencies.

Input power

The ability of a switch to handle power depends very much on the materials used for the signal carrying components of the switch and on the switch design. Two switching conditions should be considered: "hot" switching and "cold" switching. Hot switching occurs when $\mathrm{RF} /$ microwave power is present at the ports of the switch at the time of the switching function. Cold switching occurs when the signal power is removed before activating the switching function.

Hot switching causes the most stress on internal contacts, and can lead to premature failure. Cold switching results in lower contact stress and longer life, and is recommended in situations where the signal power can be removed before switching.

Insertion loss

Insertion loss for electromechanical switches is very low, ranging from 0.1 dB at low frequencies to 1.5 dB at high frequencies. This performance distinguishes them from solid-state switches which range from 0.5 dB to 6 dB . Factors that influence loss are: path length, types of material used on signal carrying surfaces, contact wear, corrosion or other contamination. Insertion loss can play an important role whether high or low power is present. In highpower systems, this additional loss may require that the source power be increased to compensate. In receiver applications, the effective sensitivity of the system is reduced by the amount of insertion loss. In other systems, additional power may not be available, due to the prohibitive cost of supplying more power.

Isolation

High isolation in switches is important to almost every measurement application, because it prevents unwanted signals from interfering with the desired signal. Isolation is the amount that the unwanted signal is attenuated before it is detected at the port of interest. Agilent switches have high isolation, with typical values $>90 \mathrm{~dB}$ to 18 GHz and $>50 \mathrm{~dB}$ to 26.5 GHz . High isolation can be particularly important in measurement systems where signals from sources are being routed. If too much power from an unselected source is allowed to flow through a device under test, measurement results will not be accurate.

SWR

The standing wave ratio (SWR) of a switch specifies how well the connectors and switching signal path are matched to an ideal 50 ohm transmission line. Low SWR is crucial in test set design when signal routing configurations involve multiple components in series, thereby adding to measurement uncertainty. SWRs of 1.1 to 1.5 are typical in Agilent switches.

Repeatability

Repeatability plays an important role in any test system. In test applications where accuracies of less than a few tenths of a dB are required, the system designer must consider the effects of switch repeatability in addition to test equipment capabilities. In automated test systems where switches are used for signal routing, every switch will add to the repeatability error. Such errors cannot be calibrated out of the system due to their random nature. Agilent switches are designed for high repeatability, 0.03 dB maximum over 5 million cycles.

Repeatability is a measure of the change in a specification from cycle to cycle over time. When used as a part of a measurement system, switch repeatability is critical to overall system measurement accuracy. Repeatability can be defined for any of the specifications of a switch, which includes: insertion loss, reflection, isolation and phase. Insertion loss repeatability is specified for all Agilent switches, as this tends to be the specification most sensitive to changes in switch performance.

Factors that affect insertion loss repeatability include:

- Debris
- Contact pressure
- Plating quality
- Contact shape and wiping action

Debris is generated in a switch when two surfaces come in contact during movement. The debris may find its way between contacts, causing an open circuit. Agilent has developed processes that control contamination and debris generation to minimize these effects.

Switch contacts are typically gold plated to maximize conductivity and minimize surface corrosion. Special plating materials, surface finish, contact shape and wiping pressure all combine to minimize surface effects on insertion loss repeatability.

Contact resistance is inversely proportional to contact pressure. Insufficient pressure increases life but also increases contact loss. Too much pressure damages the contact surfaces, with little insertion loss improvement. Contact surface wiping provides a means for breaking through surface corrosion and moving debris away from the contacts. This allows the switch to clean the contact surfaces with each switch cycle.

Life

The life of a switch is usually specified in cycles, i.e. the number of times it switches from one position to another and back. Agilent determines life by cycling switches to the point of degradation. Typically, Agilent switches, in life cycle tests, perform to specifications for at least twice as many cycles as warranted.

Four Agilent switch series have a specified life of 5 million cycles. This long life results in lower cost of ownership by reducing periodic maintenance, downtime and repairs.

Agilent offers a broad line of coaxial switches, covering up to 50 GHz , for use in test and measurement applications. All switches use magnetically-latched solenoids and are primarily designed with break-before-make RF contacts for test simplicity.

Switches

Agilent 8761A

Agilent 8762/63/64 series

Agilent 8765 series

Coaxial - flexible, high performance

The Agilent N181x series of coaxial latching switches combines unmatched flexibility of configuration with excellent repeatability, Iong life, and reliability. Options include choice of DC connector type, coil voltage level, standard or high performance, position indictors, current interrupts, and TTL/5V CMOS compatibility. All switches have SMA (f) connectors and are offered in frequency ranges up to 26.5 GHz .

The Agilent N1810UL is a three-port single pole double throw (SPDT) switch. The Agilent N1810TL is a single pole double throw switch with two 50 ohm terminations, making it ideal for applications where port matching is required. The N1811TL is a four-port switch with one internal load that can terminate the device under test when in the bypass mode. (up to 1 watt.) The N1812UL is a versatile, unterminated 5 -port switch that can be used in transfer switch applications and for signal path reversal.

SPDT - configurable connectors

Agilent 8761A, B SPDT switches operate up to 18 GHz. Each port features six connector options plus 50 ohm termination for design flexibility.

SPDT - high performance

Agilent 8762A, B, C switches operate up to 26.5 GHz . They provide exceptional isolation of 90 dB to 18 GHz and switched terminations, so that all ports maintain a 50 ohm match. Internal loads are rated at 1 watt average (100 W peak, $10 \mu \mathrm{sec}$ pulse width). Control voltage Options T15 and T24 are compatible with TLL/5V CMOS drive circuitry. Another model, Agilent 8762F, is designed for 75 ohm transmission lines, making it valuable for communication applications up to 4 GHz .

SPDT - high reliability

Agilent 8765A, B, C, D, F are SPDT switches that offer outstanding performance and a life of 5 million cycles. This switch family is available in four models up to 40 GHz , as well as a 75 ohm model to 4 GHz . Unlike the Agilent 8762 switches, they do not have internal, switched RF loads or DC current interrupts. Coil voltage options cover the complete range from 5 Vdc to 24 Vdc . Since the switches are magnetically latched, the coil voltage may be switched off after 15 ms .

The standard Agilent 8765 switch comes with ribbon cables and standard printed circuit board with a 0.025 -inch connector for convenient assembly. Optional solder terminals are available.

Coaxial - high performance

Agilent $8763 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ switches operate up to 26.5 GHz . They are preferred for drop-in, drop-out applications because of their compact design. These switches are used to automatically insert or remove a test component from a signal path. Because of their excellent isolation, they can also be used as the intersection (crosspoint) switch in full-access matrix switching applications. One port is internally terminated. Options T15 and T24 are available for TTL/5V CMOS compatibility.

Agilent 8764A, B, C switches operate up to 26.5 GHz , similar to the Agilent 8763, but with the internal termination replaced by a fifth port. The fifth port can be utilized for signal path reversal or as a calibration port. Options T15 and T24 offer TTL/5V CMOS compatibility.

Multiport - low profile

Agilent 8766/67/68/69K series switches are modified versions of the Agilent 8494/95/96/97 series step attenuators (DC to 26.5 GHz) for applications requiring a single-pole, 3-throw, 4-throw, 5-throw or 6-throw coaxial switch. The switch ports are unterminated. These switches offer warranted repeatability of 0.03 dB maximum over 5 million switching cycles.

The switches are available with several optional cables and connectors to make them compatible with standard 14-pin DIP sockets. Isolation and insertion loss vary with frequency, and depend upon the port selected.

Agilent 8766/67/68/69 series

Agilent 87104/106 series

Agilent 87204/206 series

Multiport - high performance

Agilent 87104A, B, C and 87106A, B, C multiport switches operate up to 26.5 GHz . These switches offer warranted repeatability of 0.03 dB maximum over 5 million switching cycles.

For rigorous requirements such as matrix switching, you can rely on port-to-port isolation of better than 100 dB at $4 \mathrm{GHz}, 70 \mathrm{~dB}$ at 20 GHz , and 65 dB at 26.5 GHz . When used in switching trees or in full access matrixes, isolation and insertion loss repeatability is crucial to measurement confidence.

Agilent 87104 is a single-pole-4-throw (SP4T) and the Agilent 87106 is a SP6T function. Both switches have internal solid-state logic that automatically programs the non-used ports to a matched load when any one port is programmed to "on". This relieves the user from having to provide external logic drive pulses. For userdesigned circuit drivers, Option T24 is available. It provides internal circuits that are compatible with external TTL/5V CMOS digital ICs.

Internal current interrupts and position indicators are optoelectronically coupled to the electromechanical switch action. These solenoids are all magnetically latched, eliminating the need for maintaining coil current. This provides highly-reliable solenoid control along with accurate position indication to monitor circuits. Unselected RF ports are terminated in a well-matched 50 ohm load for eliminating unwanted reflections in unused signal lines.

The Agilent 87104/106 models have the capability to perform switching with a make-before-break action, by energizing the coils in the proper logic sequence. When this function is engaged, the impedance momentarily goes to 25 ohms, and then returns to the nominal 50 ohm match.

The standard Agilent 87204/206 provides a 16 -pin drive connector while Option 100 provides solder terminals. The Agilent 87204/206 can perform make-before-break or break-before-make switching.

Transfer

The Agilent 87222C/D/E transfer switches can be used in many different applications to increase system flexibility and simplify system design. The following are five examples: switch between two inputs and two outputs, use as a drop-out switch, use for signal reversal, configure as a SPDT switch, and bypass an active device.

Matrix

The 87406B matrix switch consists of 6 ports which can be individually connected via internal microwave switches to form an RF path. The switch can be configured for blocking 1×5, 2×4, or 3×3 switching applications.

GPIB compatibility

All of the Agilent switch families can be remotely and automatically controlled from switch driver instruments such as the Agilent 11713A or 3488A. These drivers are all GPIB (IEEE 488) compatible. Drivers are also available for Agilent VXI and Agilent VEE systems.

Switch driver cables

For complete cable configuration information, request publication number 5989-3703EN, Agilent 11713A Switch and Attenuator Driver Configuration Guide.

Switches
Switches (continued)

Switch selection guide

Switch specifications

Agilent model	8761A, 8761B	8765A, 8765B, 8765C	8765D	8765F	N1810UL	8762A, 8762B	8762C	8762F	N1810TL
Features	Break-before-make								
	Unterminated					Terminated			
	Configurable RF connectors				Current Interrupts				
Impedance	50Ω	50Ω	50Ω	75Ω	50Ω	50Ω	50Ω	75Ω	50Ω
Frequency range	DC to 18 GHz	A: DC to 4 GHz B: DC to 20 GHz C: DC to 26.5 GHz	DC to 40 GHz	DC to 4 GHz	DC to 26.5 GHz	A: DC to 4 GHz B: DC to 18 GHz	DC to 26.5 GHz	DCto 4 GHz	DC to 26.5 GHz
Insertion loss (dB)	<0.5 to 12.4 GHz <0.8 to 18 GHz	A \& B: $0.2+0.025 f^{1}$ max C: $0.25+0.0277^{1}$ max	$\begin{aligned} & 0.2+0.023 f^{1} \text { max } \\ & 0.75+0.023 \Delta^{f^{2} \max } \\ & (26.5 \leq f \leq 40) \end{aligned}$	<0.18 to 1 GHz <0.24 to 2 GHz <0.4 to 4 GHz	$0.35+(0.45 / 26.5))^{1}$ Option 302: $0.20+(0.45 / 26.5))^{1}$	A: <0.20 to 2 GHz <0.25 to 4 GHz B: <0.20 to 2 GHz <0.50 to 18 GHz	<0.25 to 2 GHz <0.50 to 18 GHz <1.25 to 26.5 GHz	<0.4	$0.35+(0.45 / 26.5))^{-1}$ Option 302: $0.20+(0.45 / 26.5))^{1}$
SWR (through line)	See connector code Option data on page 100	A \& B: <1.2 to 4 GHz <1.35 to 12.4 GHz <1.45 to 18 GHz <1.7 to 20 GHz C: <1.25 to 4 GHz <1.45 to 18 GHz <1.7 to 26.5 GHz	<1.10 to 4 GHz <1.30 to 18 GHz <1.50 to 40 GHz	<1.15 to 1 GHz <1.20 to 4 GHz	<1.15 to 4 GHz <1.25 to 12.4 GHz <1.30 to 20 GHz <1.60 to 26.5 GHz Option 302: <1.10 to 4 GHz <1.20 to 12.4 GHz <1.23 to 20 GHz <1.45 to 26.5 GHz	A: <1.1 to 2 GHz <1.2 to 4 GHz B: <1.1 to 2 GHz <1.2 to 12.4 GHz <1.3 to 18 GHz	$\begin{aligned} & <1.15 \text { to } 2 \mathrm{GHz} \\ & <1.25 \text { to } 12.4 \mathrm{GHz} \\ & <1.4 \text { to } 18 \mathrm{GHz} \\ & <1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	<1.3	<1.15 to 4 GHz <1.25 to 12.4 GHz <1.30 to 20 GHz <1.60 to 26.5 GHz Option 302: <1.10 to 4 GHz <1.20 to 12.4 GHz <1.23 to 20 GHz <1.45 to 26.5 GHz
SWR (into termination)	Add 0.05 to SWR (Through Line) of connector selected	N/A		N/A		A: <1.1 to 2 GHz <1.2 to 4 GHz B: <1.1 to 2 GHz <1.2 to 12.4 GHz <1.3 to 18 GHz	$\begin{aligned} & <1.15 \text { to } 2 \mathrm{GHz} \\ & <1.25 \text { to } 12.4 \mathrm{GHz} \\ & <1.3 \text { to } 18 \mathrm{GHz} \\ & <1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	<1.3	<1.15 to 4 GHz <1.25 to 12.4 GHz <1.30 to 20 GHz <1.60 to 26.5 GHz Option 302: <1.10 to 4 GHz <1.20 to 12.4 GHz <1.23 to 20 GHz <1.45 to 26.5 GHz
Isolation (dB)	>50 to 12.4 GHz >45 to 18 GHz	$110-2.255^{1}$ min	$110-2.25 f^{1}$ min	>100 to 1 GHz >90 to 4 GHz	$90-(30 / 26.5))^{1}$ Option 301: $125-(35 / 26.5))^{1}$	>100 to 4 GHz >90 to 18 GHz	>90 to 18 GHz >50 to 26.5 GHz	>100	$90-(30 / 26.5))^{1}$ Option 301: $125-(35 / 26.5))^{+1}$
Input power Average Peak ${ }^{3}$	$\begin{aligned} & 10 \mathrm{~W} \\ & 5 \mathrm{~kW} 4 \end{aligned}$	2W $100 \mathrm{~W}(10 \mu \mathrm{~s}$ max)			1W $50 \mathrm{~W}(10 \mu \mathrm{~s}$ max)	$\begin{gathered} 1 W \\ 100 W(10 \mu s \max) \end{gathered}$			1W 50 W (10 $\mu \mathrm{s}$ max)
Switching time (max)	50 ms	15 ms				30 ms			15 ms
Repeatability $(\max)^{5}$	0.03 dB						0.03 dB to 18 GHz 0.5 dB to 26.5 GHz	0.03 dB	
Life (min)	1 million cycles	5 milion cycles				1 million cycles			5 million cycles
RF connectors	See connector options in ordering example	A \& B: SMA (f) C: $3.5 \mathrm{~mm}(f)$	$2.4 \mathrm{~mm}(f)$ See Options	$\begin{aligned} & \text { Mini SMB }(\mathrm{m})^{6} \\ & (75 \Omega) \end{aligned}$	SMA (f)	SMA (f)	$3.5 \mathrm{~mm}(\mathrm{f})$	$\begin{aligned} & \text { Mini SMB }(m)^{6} \\ & (75 \Omega) \end{aligned}$	SMA (f)
DC connectors	Solder terminals	Ribbon cable			D-submini 9 pin or solder terminals	Solder terminals			D-submini 9 pin or solder terminals

${ }^{1}$ f is frequency in GHz.
${ }^{2} \Delta f=f(G H z)-26.5$.
${ }^{3}$ Not to exceed average power (non-switching).
4 Option 7: 2 W average, 100 W peak ($10 \mu \mathrm{~s}$ max)
${ }^{5}$ Measured at $25^{\circ} \mathrm{C}$.
${ }^{6} 75 \Omega$ Mini SMB does not mate with 75Ω SMB. See data sheet for more information.

Switches

SPDT Switch (continued)

Options (8761/2/5 series)

Agilent model	8761A	8761B	8762A, B, C, F 8765A, B, C, D, F						
Supply voltage, current and impedance ${ }^{1}$			Option 024/T24	Option 011	Option 015/T15	Option 005/305	Option 010/310	Option 015/315	Option 024/324
Supply voltage Range	12 to 15 Vdc	24 to 30 Vdc	20 to 32 Vdc	4.5 to 7 Vdc	12 to 20 Vdc	4.5 to 7 Vdc	7 to 12 Vdc	12 to 20 Vdc	20 to 32 Vdc
Supply voltage (nom)	12 Vdc	24 Vdc	24 Vdc	5 Vdc	15 Vdc	5 Vdc	10 Vdc	15 Vdc	24 Vdc
Current (nom)	80 mA	65 mA	120 mA	400 mA	182 mA	385 mA	300 mA	200 mA	120 mA
Impedance (nom)	$150 \Omega, 90 \mathrm{mH}$	$400 \Omega, 300 \mathrm{mH}$	$200 \Omega, 127 \mathrm{mH}$	$13 \Omega, 8 \mathrm{mH}$	$82 \Omega, 57 \mathrm{mH}$	$13 \Omega, 8 \mathrm{mH}$	$33 \Omega, 25 \mathrm{mH}$	$75 \Omega, 55 \mathrm{mH}$	$200 \Omega, 135 \mathrm{mH}$
Control logic	N/A		Option T15: TTL/5V CMOS compatible logic with 15 Vdc supply ${ }^{2}$ Option T24: TTL/5V CMOS compatible logic with 24 Vdc supply ${ }^{2}$			N/A			
RF connector	See ordering information		N/A			D (Option 292): 2.92 mm (f)			
DC connectors	N/A					Option 108: 8-inch ribbon cable extension Option 116: 16 -inch ribbon cable extension			
Calibration documentation	See ordering information								

Options (N1810TL/UL)

Frequency range	Coil voltage	DC connector	Performance	Drive
$\mathbf{0 0 2}$ DC to 2 GHz	$\mathbf{1 0 5}^{\mathbf{3}} 5 \mathrm{Vdc}$	$\mathbf{2 0 1}$ D-submini 9 pin (f)	$\mathbf{3 0 1}$ High isolation	$\mathbf{4 0 1 ~ T L / 5 V ~ C M O S ~ c o m p a t i b l e ~}$
$\mathbf{0 0 4} \mathrm{DC}$ to 4 GHz	$\mathbf{1 1 5} 15 \mathrm{Vdc}$	$\mathbf{2 0 2}$ Solder lugs	$\mathbf{3 0 2}$ Low SWR \& insertion loss	$\mathbf{4 0 2}$ Position indicators
$\mathbf{0 2 0}$ DC to 20 GHz	$\mathbf{1 2 4} 24 \mathrm{Vdc}$		$\mathbf{U K 6}$ Calibration certificate with test data	$\mathbf{4 0 3}$ Current interrupts
$\mathbf{0 2 6} \mathrm{DC}$ to 26.5 GHz				

${ }^{1}$ Must specify option for Agilent 8765 series products.
${ }^{2}$ Not available with Agilent 8762 F.
${ }^{3}$ Option 105 includes Option 402 and Option 403.

Schematics

Agilent 8761 series

Agilent 8762 series

Agilent 8765 series ${ }^{1}$

${ }^{1}$ Option 100 Solder terminal numbers in parenthesis

Signal path control data

The tables shown here can be used to better understand how to select a signal path for each switch. For example, the Agilent 8762 switch has two drive control alternatives i.e. a standard drive scheme and a TTL/5V CMOS drive scheme. For TL/5V CMOS drive, it is required that the supply voltage be applied to pin C and that pin 1 is grounded. To close the path from port 1 to port C, apply a TTL "low" to pin 2. Additional information related to signal path control can be found in the product data sheet.

Agilent 8761 series

		DC drive control voltage
RF path	Pin " + "	Pin " - "
1 to C	Negative	Positive
2 to C	Positive	Negative

Agilent 8762 series

	Drive control alternatives				
	Standard drive voltage 2			TTL/5V CMOS drive voltage ${ }^{2,3}$	
	Pin 1	Pin 2	Pin 1	Pin 2	
1 to C	Ground	Open	Ground	"High"	
2 to C	Open	Ground	Ground	"Low"	

Agilent 8765 series

RF path	Std. (Option 100)	Drive control alternatives ${ }^{4}$								
		Common positive drive voltage			Common negative drive voltage			Polarity reversal drive voltage		
		Pin 1 (1)	Pin 3/4 (2/3)	Pin 5 (4)	Pin 3 (2)	Pin 1/5 (1/4)	Pin 4 (3)	Pin 1 (1)	Pin 3/4 (2/3)	Pin 5 (4)
1 to C		Open	Supply voltage	Ground	Open	Ground	Supply voltage	Ground	Connected	Supply voltage
2 to C		Ground	Supply voltage	Open	Supply voltage	Ground	Open	Supply voltage	Connected	Ground

[^10]
Agilent N1810UL

Agilent N1810TL

Switches

Agilent 8761 series

Port C

See ordering example for Agilent 8761 options on page 102.

Dimensions are in millimeters (inches) nominal, unless otherwise specified.

Agilent 8761 series connector dimensions

Connector code option	Connector type	Dimension "A" mm (inch)	SWR (through line)	
$\mathbf{0}$	Type-N (f)	13.72	(0.540)	<1.25 to 18 GHz
$\mathbf{1}$	Type-N (m)	19.79	(0.775)	<1.25 to 18 GHz
$\mathbf{2}$	APC-7 threaded sleeve	9.27	(0.365)	<1.2 to 18 GHz
$\mathbf{3}$	APC-7 coupling nut	11.94	(0.470)	<1.2 to 18 GHz
$\mathbf{4}$	UT-250 coax	9.27	(0.365)	<1.25 to 18 GHz
$\mathbf{5}$	SMA (f)	16.13	(0.635)	<1.35 to 18 GHz
$\mathbf{6}$	SMA (m)	17.15	(0.675)	<1.35 to 18 GHz
$\mathbf{7}$	50Ω termination	30.5	(1.20)	

Agilent 8762 series

Agilent 8765A, B, C, D

Standard

Option 100

> RF Connectors: A, B: SMA (f) C: 3.5 mm (f) D: 2.4 mm (f)

Agilent 8765F

RF Connectors: 75Ω Mini-SMB (m) ${ }^{2}$
${ }^{1} 8.46$ (0.333) for D versions.
${ }^{2} 75 \Omega$ Mini-SMB (m) does not mate with 75Ω SMB connectors. See data sheet for details.

Switches

Ordering Information

Agilent 8761 series ordering example

Port 1 Port $2 \quad$ Port C					Option 612 shown on Page 100 in upper right diagram.
Agilent 8761 A	Option 612				
Solenoid voltage	Connector code ${ }^{1}$				
A: 12 to 15 Vdc	0 : N (f)			4: 7 mm for UT-250 coax	
B: 24 to 30 Vdc	1: $\mathrm{N}(\mathrm{m})$			5: SMA (f)	
	2: APC-7 threaded sleeve			6: SMA (m)	
	3: APC-7 coupling nut			7: 50 ohm termination ${ }^{2}$	

Agilent 8762 series ordering example

Agilent 8762 B	Option T15	Option UK6
Frequency range	Supply voltage/control logic	Calibration documentation ${ }^{4}$
A: 4 GHz	024: 24 Vdc	UK6: Commercial calibration
B: 18 GHz	011: 5 Vdc	test data with cerrificate
C: 26.5 GHz	015: 15 Vdc	
F: 4 GHz (75 ohm)	T15: TTL/5V CMOS compatible with 15 Vdc supply ${ }^{3}$	
	T24: TTL/5V CMOS compatible with 24 Vdc supply ${ }^{3}$	

Agilent 8765 series ordering example

Agilent 8765 B	Option 005	Option 292	Option 108	Option	UK6
Frequency range	Supply voltage and DC connector ${ }^{1}$	RF connector ${ }^{5}$	DC connector accessories	Calibrat	n documentation ${ }^{4}$
A: 4 GHz	005: 5 Vdc with 3-inch ribbon cable	241: 2.4 mm (f)	108: 8 -inch ribbon cable extension	UK6: Co	mercial calibration
B: 20 GHz	010: 10 Vdc with 3 -inch ribbon cable	292: 2.92 mm (f)	116: 16 -inch ribbon cable extension		data with certificate
C: 26.5 GHz	015: 15 Vdc with 3-inch ribbon cable				
D: 40 GHz	024: 24 Vdc with 3-inch ribbon cable				
F: 4 GHz (75 ohm)	305: 5 Vdc with solder terminals				
	310: 10 Vdc with solder terminals				
	315: 15 Vdc with solder terminals				
	324: 24 Vdc with solder terminals				

Agilent N1810UL/TL ordering example

Specifications

Agilent model	8764A	8764B	8764C	N1812UL	8763A	8763B	8763C	N1811TL
Configuration	5 -port				4 -port			
Features	Break-before-make Current Interrupts							
	Unterminated				Terminated			
Impedance	50Ω				50Ω			
Frequency range	DC to 4 GHz	DC to 18 GHz	DC to 26.5 GHz	DC to 26.5 GHz	DC to 4 GHz	DC to 18 GHz	DC to 26.5 GHz	DC to 26.5 GHz
Insertion loss (dB)	<0.20 to 2 GHz <0.25 to 4 GHz	$\begin{aligned} & <0.20 \text { to } 2 \mathrm{GHz} \\ & <0.50 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.25 \text { to } 2 \mathrm{GHz} \\ & <0.50 \text { to } 18 \mathrm{GHz} \\ & <1.25 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$0.35+(0.45 / 26.5))^{1}$ Option 302: $0.20+(0.45 / 26.5))^{1}$	$\begin{aligned} & <0.20 \text { to } 2 \mathrm{GHz} \\ & <0.25 \text { to } 4 \mathrm{GHz} \end{aligned}$	<0.20 to 2 GHz <0.50 to 18 GHz	$\begin{aligned} & <0.25 \text { to } 2 \mathrm{GHz} \\ & <0.50 \text { to } 18 \mathrm{GHz} \\ & <1.25 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$0.35+(0.45 / 26.5))^{1}$ Option 302: $0.20+(0.45 / 26.5))^{1}$
SWR (through line)	$\begin{aligned} & <1.1 \text { to } 2 \mathrm{GHz} \\ & <1.2 \text { to } 4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.1 \text { to } 2 \mathrm{GHz} \\ & <1.2 \text { to } 12.4 \mathrm{GHz} \\ & <1.3 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.15 \text { to } 2 \mathrm{GHz} \\ & <1.25 \text { to } 12.4 \mathrm{GHz} \\ & <1.4 \text { to } 18 \mathrm{GHz} \\ & <1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.15 \text { to } 4 \mathrm{GHz} \\ & <1.25 \text { to } 12.4 \mathrm{GHz} \\ & <1.30 \text { to } 20 \mathrm{GHz} \\ & <1.60 \text { to } 26.5 \mathrm{GHz} \\ & \text { Option } 302 \text { : } \\ & <1.10 \text { to } 4 \mathrm{GHz} \\ & <1.20 \text { to } 12.4 \mathrm{GHz} \\ & <1.23 \text { to } 20 \mathrm{GHz} \\ & <1.45 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.1 \text { to } 2 \mathrm{GHz} \\ & <1.2 \text { to } 4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.1 \text { to } 2 \mathrm{GHz} \\ & <1.2 \text { to } 12.4 \mathrm{GHz} \\ & <1.3 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.15 \text { to } 2 \mathrm{GHz} \\ & <1.25 \text { to } 12.4 \mathrm{GHz} \\ & <1.4 \text { t } 18 \mathrm{GHz} \\ & <1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.15 \text { to } 4 \mathrm{GHz} \\ & <1.25 \text { to } 12.4 \mathrm{GHz} \\ & <1.30 \text { to } 20 \mathrm{GHz} \\ & <1.60 \text { to } 26.5 \mathrm{GHz} \\ & \text { Option } 302: \\ & <1.10 \text { to } 4 \mathrm{GHz} \\ & <1.20 \text { to } 12.4 \mathrm{GHz} \\ & <1.23 \text { to } 20 \mathrm{GHz} \\ & <1.45 \text { to } 26.5 \mathrm{GHz} \end{aligned}$
SWR (into termination)	N/A	N/A	N/A	N/A	$\begin{aligned} & <1.1 \text { to } 2 \mathrm{GHz} \\ & <1.2 \text { to } 4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.1 \text { to } 2 \mathrm{GHz} \\ & <1.2 \text { to } 12.4 \mathrm{GHz} \\ & <1.3 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.15 \text { to } 2 \mathrm{GHz} \\ & <1.25 \text { to } 12.4 \mathrm{GHz} \\ & <1.3 \text { t } 18 \mathrm{GHz} \\ & <1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	<1.15 to 4 GHz <1.25 to 12.4 GHz <1.30 to 20 GHz <1.60 to 26.5 GHz Option 302: <1.10 to 4 GHz <1.20 to 12.4 GHz <1.23 to 20 GHz <1.45 to 26.5 GHz
Isolation (dB)	>100 to 4 GHz	>90 to 18 GHz	>90 to 18 GHz >50 to 26.5 GHz	$90-(30 / 26.5))^{1}$ Option 301: $125-(35 / 26.5) f^{1}$	>100 to 4 GHz	>90 to 18 GHz	$\begin{aligned} & >90 \text { to } 18 \mathrm{GHz} \\ & >50 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$90-(30 / 26.5))^{1}$ Option 301: $125-(35 / 26.5))^{+1}$
Input power Average Peak ${ }^{2}$	1 W 100 W ($10 \mu \mathrm{~s}$ max)	1 W 100 W (10 $\mu \mathrm{s}$ max)	1 W 100 W (10 $\mu \mathrm{s}$ max)	1 W 50 W (10 $\mu \mathrm{s}$ max)	1 W 100 W (10 $\mu \mathrm{s}$ max)	1 W 100 W (10 $\mu \mathrm{s}$ max)	1 W 100 W ($10 \mu \mathrm{~s}$ max)	1 W 50 W ($10 \mu \mathrm{~s}$ max)
Switching time (max)	30 ms	30 ms	30 ms	15 ms	30 ms	30 ms	30 ms	15 ms
Repeatability $(\max)^{3}$	0.03 dB	0.03 dB	0.03 dB to 18 GHz 0.5 dB to 26.5 GHz	0.03 dB	0.03 dB	0.03 dB	0.03 dB to 18 GHz 0.5 dB to 26.5 GHz	0.03 dB
Life (min)	1 million cycles	1 million cycles	1 million cycles	5 million cycles	1 million cycles	1 million cycles	1 million cycles	5 million cycles
RF connectors	SMA (f)	SMA (f)	3.5 mm (f)	SMA (f)	SMA (f)	SMA (f)	3.5 mm (f)	SMA (f)
DC connectors	Solder terminals	Solder terminals	Solder terminals	D-submini 9 pin or solder terminals	Solder terminals	Solder terminals	Solder terminals	D-submini 9 pin or solder terminals

${ }^{1}$ fis frequency in $G H z$.
${ }^{2}$ Not to exceed 1 W average (non-switching).
${ }^{3}$ Measured at $25^{\circ} \mathrm{C}$.

Switches

Options (8763/4 series)

Control logic	Option T15: TTL/5V CMOS compatible logic with 15 Vdc supply Option T24: TTL/5V CMOS compatible logic with 24 Vdc supply		
Supply voltage, current and impedance	$\mathbf{0 p t i o n ~ \mathbf { 0 2 4 } / \mathrm { T } 2 4}$	$\mathbf{0 p t i o n ~ \mathbf { 0 1 1 }}$	$\mathbf{0 p t i o n ~ \mathbf { 0 1 5 / T 1 5 }}$
Supply voltage range	20 to 32 Vdc	4.5 to 7 Vdc	12 to 20 Vdc
Supply voltage (nom)	24 Vdc	5 Vdc	15 Vdc
Current (nom)	120 mA	400 mA	182 mA
Impedance (nom)	$200 \Omega, 127 \mathrm{mH}$	$13 \Omega, 8 \mathrm{mH}$	$82 \Omega, 57 \mathrm{mH}$
Calibration documentation	See ordering information		

Options - N1811TL, N1812UL

Frequency range		Coil voltage		DC connector		Performance		Drive	
002	DC to 2 GHz	1052	5 Vdc	201	D-submini 9 pin (f)	301	High isolation	401	TL/5V CMOS compatible
004	DC to 4 GHz	115	15 Vdc	202	Solder lugs	302	Low SWR \& insertion loss	402	Position indicators
020	DC to 20 GHz		24 Vdc			UK6	Calibration certificate with test data	403	Current interrupts
026	DC to 26.5 GHz								

${ }^{1}$ Specifications include margins for measurement uncertainties.
${ }^{2}$ Option 105 includes Option 402 and Option 403.

Schematics

Agilent 8763 series

Signal path control data

The table at right can be used to better understand how to select a signal path for each switch. For example, the Agilent 8763 switch has two drive control alternatives i.e. a standard drive scheme and a TTL/5V CMOS drive scheme. For standard drive, it is required that the supply voltage be applied to pin C. The path from port 1 to port 2 and port 3 to port 4 can be closed by grounding pin 1 and opening pin 2. Additional information related to signal path control can be found in the product data sheet for each of the products shown here.

Agilent 8764 series

Agilent 8763/64 series

Agilent model	Drive control alternatives				
	RF Path	Standard drive voltage ${ }^{1}$		TTL/5V CMOS drive voltage ${ }^{1}$	
		Pin 1	Pin 2	Pin 1	Pin 2
8763A, B, C	$\begin{aligned} & 1 \text { to } 2 \\ & 3 \text { to } 4 \end{aligned}$	Ground	Open	Ground	"Low"
	$\begin{aligned} & 2 \text { to } 3 \\ & 1 \text { terminated } \\ & 4 \text { open } \end{aligned}$	Open	Ground	Ground	"High"
8764A, B, C	$\begin{aligned} & 2 \text { to } 3 \\ & 4 \text { to } 5 \\ & 1 \text { open } \end{aligned}$	Ground	Open	Ground	"Low"
	$\begin{aligned} & 1 \text { to } 2 \\ & 3 \text { to } 4 \\ & 5 \text { open } \end{aligned}$	Open	Ground	Ground	"High"

${ }^{1}$ Drive pin C is supply voltage.

Agilent N1811TL

Switches

Agilent N1812UL

Switches

Bypass Switch (continued)

Outline drawing

Agilent 8763/64 series

$$
\text { RF connectors: A, B: SMA (f) C: } \mathbf{3 . 5} \mathrm{mm} \text { (f) }
$$

Dimensions are in millimeters (inches) nominal, unless otherwise specified.

Ordering information

Agilent 8763/64 series ordering example

Agilent 8763 B		Option 015	Option UK6
Type	Frequency range	Supply voltage/control logic	Calibration documentation
3: 4 port 4: 5 port	A: 4 GHz B: 18 GHz C: 26.5 GHz	024: 24 Vdc 011: 5 Vdc 015: 15 Vdc T15: TTL/5V CMOS compatible logic with 15 Vdc supply T24: TTL/5V CMOS compatible logic with 24 Vdc supply	UK6: Commercial calibration test data with certificate

Switches

Agilent N1811TL/12UL ordering example

Agilent N1811TL/12UL	Option 002	Option 105	Option 201	Option 301	Option 401
	Frequency range	Coil voltage	DC connector	Performance	Drive
	002: DC to 2 GHz 004: DC to 4 GHz 020: DC to 20 GHz 026: DC to 26.5 GHz	$\begin{aligned} & \text { 105: } 5 \mathrm{Vdc} \\ & \text { 115: } 15 \mathrm{Vdc} \\ & \text { 124: } 24 \mathrm{Vdc} \end{aligned}$	201: D-submini 9 pin (f) 202: Solder lug	301: High isolation 302: Low SWR \& insertion loss UK6: Commercial Calibration certificate with test data	401: TTL/5V CMOS compatible 402: Position indicators 403: Current interrupts

Switches

Low Profile Multiport Switch

Specifications

Agilent model	8766K 8767K	8768K	8769K
Configuration	SP3T SP4T	SP5T	SP6T
Features	Unterminated Break-before-make Current interrupts Position indication capability ${ }^{1}$		make pts pability ${ }^{1}$
Impedance	50Ω		
Frequency range	DC to 26.5 GHz		
Insertion loss (dB)	Signal path Common to Port 1: $0.2 \mathrm{~dB}+0.05 \mathrm{~dB} \times$ freq (GHz) Common to Port 2: $0.2 \mathrm{~dB}+0.06 \mathrm{~dB} \times$ freq (GHz) Common to Port 3: $0.2 \mathrm{~dB}+0.08 \mathrm{~dB} x$ freq (GHz) Common to Port 4: $0.25 \mathrm{~dB}+0.095 \mathrm{~dB} \times$ freq (GHz) Common to Port 5: $0.25 \mathrm{~dB}+0.108 \mathrm{~dB} \times$ freq (GHz) Common to Port 6: $0.25 \mathrm{~dB}+0.12 \mathrm{~dB} \times$ freq (GHz)	Common to Po Common to Por Common to Por Common to Port Common to Port Common to Por	$.05 \mathrm{~dB} \times$ freq (GHz) $.06 \mathrm{~dB} \times$ freq (GHz) $.08 \mathrm{~dB} \times$ freq (GHz) $.095 \mathrm{~dB} \times$ freq (GHz) $.108 \mathrm{~dB} \times$ freq (GHz) 0.12 dB x freq (GHz)
SWR (through line)	$\begin{gathered} \quad<1.3 \text { to } 8 \mathrm{GHz} \\ <1.5 \text { to } 12.4 \mathrm{GHz} \\ <1.6 \text { to } 18 \mathrm{GHz} \\ <1.8 \text { to } 26.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & <1.3 \text { to } 8 \mathrm{GHz} \\ & <1.5 \text { to } 12.4 \mathrm{GHz} \\ & <1.6 \text { to } 18 \mathrm{GHz} \\ & <1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.3 \text { to } 8 \mathrm{GHz} \\ & <1.55 \text { to } 12.4 \mathrm{GHz} \\ & <1.8 \text { to } 18 \mathrm{GHz} \\ & <2.05 \text { to } 26.5 \mathrm{GHz} \end{aligned}$
Isolation (dB)	See chart on page 113	See chart on page 113	
Input power Average Peak ${ }^{2}$	$\begin{gathered} 1 \mathrm{~W} \\ 100 \mathrm{~W}(10 \mu \mathrm{~s} \max) \end{gathered}$	$\begin{gathered} 1 \mathrm{~W} \\ 100 \mathrm{~W}(10 \mu \mathrm{~s} \max) \end{gathered}$	
Switching time (max)	20 ms	20 ms	
Repeatability (typ)	0.01 dB to 18 GHz 0.05 dB to 26.5 GHz	0.01 dB to 18 GHz 0.05 dB to 26.5 GHz	
Life (min)	5 million cycles	5 million cycles	
RF connectors	3.5 mm (f)	3.5 mm (f)	
DC connectors	Viking cable connector	Viking cable connector	

Options

Option 024		Option 011	Option 015
Supply voltage, current, and impedance			
Supply voltage range	20 to 30 Vdc	4.5 to 7 Vdc	13 to 22 Vdc
Supply voltage (nom)	24 Vdc	5 Vdc	15 Vdc
Current (nom)	130 mA	332 mA	187 mA
Impedance (nom)	$185 \Omega, 65 \mathrm{mH}$	17 ת, 5.5 mH	$80 \Omega, 30 \mathrm{mH}$
RF connectors	Option 002: SMA (f) ${ }^{4}$ Option 004: 3.5 mm (f)		
DC connectors	Option 060: 5 feet DC control cable; 12 pin viking Option 016: 16 -inch ribbon cable		
Calibration documentation	See ordering information on page 115		

[^11]
Simplified schematics

Agilent 8766K

Agilent 8767K

Agilent 8768K

Agilent 8769K

Dimensions are in millimeters (inches) nominal, unless otherwise specified.

Switches

Low Profile Multiport Switch (continued)

Signal path control data

The tables below can be used to better understand how to select a signal path for each switch. The standard drive connector for each switch is a Viking connector with a 5 ft . cable. Alternately, a flat ribbon cable with a 14 -pin DIP plug is available as an option. As an example, to connect the path from port C to port 2 of the standard 8767 K , it is required that the supply voltage be applied to
pin 1 (red lead) and that pin 10 (blue lead) and pin 7 (black lead) are grounded. This will "bypass" port 1 and "select" port 2. Note that section 3 can be selected or bypassed; however, isolation performance will be affected (see next page for further information). Additional information related to signal path control can be found in the product data sheet.

Agilent 8766K SP3T switch

Switching section	1	2		
Section state	Select	Bypass	Select	Bypass
Std. Viking pin	6	5	8	7
Std. Viking wire color	Yellow	Violet	Green	Black
Option 016	2	13	5	11
Dual inline				
Pin connector				
Common to Port 1	X		X X	XX
Common to Port 2		X	X	
Common to Port 3		X		X

Agilent 8767K SP4T switch

Switching section	1		2		3	
Section state	Select	Bypass	Select	Bypass	Select	Bypass
Std. Viking pin	8	7	10	9	6	5
Std. Viking wire color	Green	Black	Blue	Orange	Yellow	Violet
Option 016	5	11	9	3	2	13
Dual inline pin connector						
Common to Port 1	X					
Common to Port 2		X				
Common to Port 3		X		X	X	
Common to Port 4		X		X		X

Agilent 8768K SP5T switch

Agilent 8769K SP6T switch

Switching section	1		2		3		4		5	
Section state	Select	Bypass								
Std. Viking pin	12	11	8	7	10	9	6	5	3	4
Std. Viking wire color	White	Brown	Green	Black	Blue	Orange	Yellow	Violet	Gray	White/Red
Option 016 Dual inline Pin connector	10	4	5	11	9	3	2	13	8	7
Common to Port 1	X									
Common to Port 2		X								
Common to Port 3		X								
Common to Port 4		X								
Common to Port 5		X		X		X		X		
Common to Port 6		X		X		X		X		X

[^12]
Isolation calculation characteristics

Isolation and insertion loss vary with frequency and depend on the port selected as shown in the chart and tables below. The input connector "C" is always defined as the connector at the end of the switch opposite the DC drive cable. The output ports are numbered sequentially from the input connector. For example, if an Agilent 8768 K is being used, use the Agilent 8768 K table to determine the isolation to each port. If port three (the third connector from the input) is selected, the isolation to ports 1and 2
will follow curve A. Isolation to port 4 will follow curve B and isolation to port 5 will follow curve C . At 8 GHz , the worst case isolation to ports 1 and 2 will be 30 dB ; to port $4,45 \mathrm{~dB}$, and to port $5,65 \mathrm{~dB}$. Note: in selecting ports 1 or 2 , isolation to disconnected ports can be varied by choosing the position of each section to "bypass" or "select". Depending on the user's application, port assignments can be critical for optimizing performance at higher frequencies.

Isolation (dB)

Agilent 8766K SP3T switch

Section	Section status		Isolation curve for Port ()		
	1	2	1	2	3
Common to Port 1	Select	Select	-	B	D
Common to Port 1	Select	Bypass	-	C	B
Common to Port 2	Bypass	Select	A	-	B
Common to Port 3	Bypass	Bypass	A	A	-

Agilent 8767K SP4T switch

Section	Section status			Isolation curve for Port ()			
	1	2	3	1	2	3	4
Common to Port 1	Select	Select	Select	-	B	D	E
Common to Port 1	Select	Select	Bypass	-	B	E	D
Common to Port 1	Select	Bypass	Select	-	C	B	C
Common to Port 1	Select	Bypass	Bypass	-	C	C	B
Common to Port 2	Bypass	Select	Select	A	-	B	C
Common to Port 2	Bypass	Select	Bypass	A	-	C	B
Common to Port 3	Bypass	Bypass	Select	A	A	-	A
Common to Port 4	Bypass	Bypass	Bypass	A	A	A	-

Switches

Low Profile Multiport Switch (continued)

Isolation calculation characteristics

Agilent 8768K SP5T switch

Section	Section status				Isolation curve for Port ()				
	1	2	3	4	1	2	3	4	5
Common to Port 1	Select	Select	Select	Select	-	B	D	E	F
Common to Port 1	Select	Select	Bypass	Select	-	B	E	D	E
Common to Port 1	Select	Bypass	Select	Select	-	C	B	D	E
Common to Port 1	Select	Bypass	Bypass	Select	-	C	C	B	C
Common to Port 2	Bypass	Select	Select	Select	A	-	B	D	E
Common to Port 2	Bypass	Select	Bypass	Select	A	-	C	B	C
Common to Port 3	Bypass	Bypass	Select	Select	A	A	-	B	C
Common to Port 4	Bypass	Bypass	Bypass	Select	A	A	A	-	A
Common to Port 5	Bypass	Bypass	Bypass	Bypass	A	A	A	A	-

Agilent 8769K SP6T switch

Section	Section status					Isolation curve for Port ()					
	1	2	3	4	5	1	2	3	4	5	6
Common to Port 1	Select	Select	Select	Select	Select	-	B	D	E	F	G
Common to Port 1	Select	Select	Select	Bypass	Select	-	B	D	F	E	F
Common to Port 1	Select	Select	Bypass	Select	Select	-	B	E	D	E	F
Common to Port 1	Select	Bypass	Select	Select	Select	-	C	B	D	E	F
Common to Port 1	Select	Bypass	Bypass	Select	Select	-	C	C	B	C	E
Common to Port 1	Select	Bypass	Bypass	Bypass	Select	-	C	C	C	B	D
Common to Port 1	Select	Bypass	Bypass	Bypass	Bypass	-	C	C	C	C	B
Common to Port 2	Bypass	Select	Select	Select	Select	A	-	B	D	E	E
Common to Port 2	Bypass	Select	Bypass	Select	Select	A	-	C	B	C	F
Common to Port 2	Bypass	Select	Bypass	Bypass	Bypass	A	-	C	C	C	B
Common to Port 3	Bypass	Bypass	Select	Select	Select	A	A	-	B	C	E
Common to Port 3	Bypass	Bypass	Select	Bypass	Select	A	A	-	A	B	D
Common to Port 3	Bypass	Bypass	Select	Bypass	Bypass	A	A	-	C	C	A
Common to Port 4	Bypass	Bypass	Bypass	Select	Bypass	A	A	A	-	A	C
Common to Port 5	Bypass	Bypass	Bypass	Bypass	Select	A	A	A	A	-	B
Common to Port 6	Bypass	Bypass	Bypass	Bypass	Bypass	A	A	A	A	A	-

Outline drawings

Agilent 8766K

Agilent 8768K

Agilent 8767K

Agilent 8766/7/8
$44.5(1.75)$
Agilent 8769
49.5 (1.95)
\downarrow

All connectors are 3.5 mm (f). Dimensions are in millimeters (inches) nominal, unless otherwise specified.

Ordering Information
Agilent 8766/67/68/69 series ordering example

Agilent 8767 K	Option 011	Option 002	Option 060	Option UK6
Type	Supply voltage	RF connector	DC connector	Calibration documentation
6: SP3T	024: 24 Vdc	004: 3.5 mm (f)	060: Viking cable connector	UK6: Commercial calibration
7: SP4T	011: 5 Vdc	002: SMA (f)	016: 16-inch ribbon cable	test data with certificate
8: SP5T	015: 15 Vdc			
9: SP6T				

Switches

High Performance Multiport Switch

Specifications

Agilent model	87104A 87104B 87104C	87106A 87106B 87106C	$\begin{aligned} & \text { 87204A } \\ & \text { 87204B } \\ & 87204 \mathrm{C} \\ & \hline \end{aligned}$	87206A 87206B 87206C
Configuration	SP4T	SP6T	SP4T	SP6T
Features		Terminated Break-before-make or make-before-break Optoelectronic current interrupts Optoelectronic position indicator ${ }^{1}$ Internal control logic		Terminated Break-before-make or make-before-break Optoelectronic current interrupts Direct path control
Impedance		50Ω		50Ω
Frequency range		A: DC to 4 GHz B: DC to 20 GHz C: DC to 26.5 GHz		A: DC to 4 GHz B: DC to 20 GHz C: DC to 26.5 GHz
Insertion loss (dB)		$0.3+0.015 \times$ freq (GHz)		$0.3+0.015 \times$ freq (GHz)
SWR		$\begin{gathered} \quad<1.2: \mathrm{DC} \text { to } 4 \mathrm{GHz} \\ <1.35: 4 \text { to } 12.4 \mathrm{GHz} \\ <1.45: 12.4 \text { to } 18 \mathrm{GHz} \\ <1.7: 18 \text { to } 26.5 \mathrm{GHz} \end{gathered}$		$\begin{gathered} \quad<1.2: \mathrm{DC} \text { to } 4 \mathrm{GHz} \\ <1.35: 4 \text { to } 12.4 \mathrm{GHz} \\ <1.45: 12.4 \text { to } 18 \mathrm{GHz} \\ <1.7: 18 \text { to } 26.5 \mathrm{GHz} \end{gathered}$
Isolation (dB)		$>100 \mathrm{~dB}$: DC to 4 GHz $>80 \mathrm{~dB}$: 12 to 15 GHz >70 dB: 15 to 20 GHz $>65 \mathrm{~dB}$: 20 to 26.5 GHz		$>100 \mathrm{~dB}$: DC to 4 GHz $>80 \mathrm{~dB}: 12$ to 15 GHz $>70 \mathrm{~dB}$: 15 to 20 GHz $>65 \mathrm{~dB}$: 20 to 26.5 GHz
Input power Average Peak ${ }^{2}$		$\begin{gathered} 1 \mathrm{~W} \\ 50 \mathrm{~W}(10 \mu \mathrm{~s} \text { max }) \end{gathered}$		$\begin{gathered} 1 \mathrm{~W} \\ 50 \mathrm{~W}(10 \mu \mathrm{~s} \text { max }) \end{gathered}$
Switching time (ms)		<15		<15
Repeatability (max) ${ }^{3}$		0.03 dB		0.03 dB
Life (min)		5 million cycles		5 million cycles
Supply voltage and current Supply voltage range Supply voltage (nom) Current (nom) ${ }^{4}$		$\begin{gathered} 20 \text { to } 32 \mathrm{Vdc} \\ 24 \mathrm{Vdc} \\ 200 \mathrm{~mA} \end{gathered}$		$\begin{gathered} 20 \text { to } 32 \mathrm{Vdc} \\ 24 \mathrm{Vdc} \\ 200 \mathrm{~mA} \end{gathered}$
RF connectors		SMA (f)		SMA (f)
DC connectors		Ribbon cable receptacle		Ribbon cable receptacle

Options

	87104A, B, C	
87106A, B, C	87204A, B, C	87206A, B, C
Control logic		N/A
OC connectors	Option 100: Solder terminals	Option 100: Solder terminals
Calibration Documentation	UK: Commercial calibration test data with certificate	UK: Commercial calibration test data with certificate

${ }^{1}$ Position sensing when used with customer supplied external circuitry only.
${ }_{2}$ Not to exceed average power (non-switching).
${ }^{3}$ Measured at $25^{\circ} \mathrm{C}$.
${ }^{4}$ Closing one RF path requires 200 mA . Add 200 mA for each additional RF path closed or opened.

Simplified schematics

Agilent 87104/204A, B, C

Agilent 87106/206A, B, C

Signal path control data

The table shown here can be used to better understand how to select a signal path for Agilent 87104/106 multiport switches. For example, there are two drive control alternatives, i.e. a standard drive scheme and a TTL/5V CMOS drive scheme. For standard drive, it is required that the supply voltage be applied to pin 1 and that pin 15 is grounded. The path from port C to port 2 can be closed by grounding pin 5 . Note that all other RF paths are simultaneously opened by internal logic. Further, the Agilent 87104/106 permits closing 1 or more RF paths simultaneously, allowing make-before-break RF switching transitions. See product data sheet for more information.

Agilent 87104/106 series signal path control data ${ }^{1}$

RF Path	Pin No. ${ }^{2}$	Drive control voltages ${ }^{2}$	
		Standard	TTL/5V CMOS
1 to C^{3}	3	Ground	"High"
2 to C	5	Ground	"High"
3 to C	7	Ground	"High"
4 to C^{3}	9	Ground	"High"
5 to C	11	Ground	"High"
6 to C	13	Ground	"High"
Open all paths	164	Ground	"High"

${ }^{1}$ Agilent recommends the Agilent 87130A/70611A switch driver for Agilent 87204/206 series products. See data sheet for additional information related to driving these switches.
${ }^{2}$ Pin 1 is supply voltage. Pin 15 is common ground.
${ }^{3}$ Paths 1 and 4 are not available for Agilent 87104A, B, C.
${ }^{4}$ Not available on Option 100.

Drive connection diagrams

Agilent 87104/106 series

Standard/Option T24

Switch connector

Mating cable connector

Option 100 (solder terminals)

Agilent 87204/206 series

Standard

[^13]2 This function is not available on Option 100.

Outline drawings

Agilent 87104/106, 87204/206 series

Dimensions are in millimeters (inches) nominal, unless otherwise specified.

Ordering information
Agilent 87104/106/204/206 series ordering example

[^14]
Applications

The Agilent 87222C/D/E transfer switches can be used in many different applications to increase system flexibility and simplify system design. The following are five examples: switch between two inputs and two outputs, use as a drop-out switch, use for signal reversal, configure as a SPDT switch, and bypass an active device.

The Agilent $87222 \mathrm{C} / \mathrm{D} / \mathrm{E}$ transfer switches have the ability to exchange two signals between two inputs and two outputs. The transfer switches can connect two different instruments with two devices under test (DUT). Once switched, the signals are exchanged between the two instruments and the two DUTs. The exchanged signals allow complete network and spectrum analysis on two devices with a single switch and one test setup. See Figure 1 for an example of this application.

Figure 1. Switching two instruments and two DUTs

The Agilent 8782C/D/E can be used as a simple drop-out switch where a signal is either run through the device under test or straight through the switch, bypassing the device. See Figure 3.

Figure 3. Drop-out switch

In the signal reverse configuration, a device can be connected across two diagonal ports of the Agilent 87222C/D/E transfer switch. This will allow the signal direction through the device to be reversed. See Figure 2.

Figure 2. Signal reversal

By attaching an external termination, the designer can use the Agilent 87222C/D/E in a SPDT terminated switch configuration. See Figure 4.

Figure 4. SPDT terminated

In Figure 5, an active device, such as an amplifier, is inserted into a signal path presenting a unique problem. A single transfer switch has the undesirable characteristic of shunting the output of the amplifier to its input when the signal is bypassing the amplifier. The advantage of using two transfer switches is that an additional signal path is available, however two SPDT switches can also be used. This additional path can utilize the same amplifier when the original path is bypassed.

Figure 5. Bypassing an active device

Driving the switch

There are two positions for the Agilent 87222C/D/E transfer switch. See Table A on page 123. Position A has RF Port 1 connected to RF Port 2 and RF Port 3 connected to RF Port 4. Position B has RF Port 2 connected to RF Port 3 and RF Port 1 connected to RF Port 4. The switch can be driven with a standard grounding drive control with or without a separate ground. Single line or dual line TTL control are also available. The switch operates in a break-before-make mode.

Caution 11713A switch driver users: Do not drive the 87222C/D/E using the S9 or SO outputs from either the banana-plug outputs or the Viking connectors located on the rear panel of the 11713A.

(I) Standard drive:

See Figure 6 on page 123 for drive connection diagrams.

- Connect Pin 1 to supply (+20 VDC to +32 VDC)
- Connect Pin 9 to ground (see note 1)
- Select position "A" by applying ground to Pin 3 (see note 3)
- Select position "B" by applying ground to pin 5 (see note 3)

(II) Single line TTL drive:

See Figure 6 on page 123 for drive connection diagrams.
See Figure 7 on page 123 for TTL voltage states.

- Connect Pin 1 to supply (+20 VDC to +32 VDC)
- Connect Pin 9 to ground (see notes 2, 4)
- Connect Pin 8 to TTL "High"
- Select position "A" by applying TL "High" to pin 7 (see note 3)
- Select position "B" by applying TTL "Low" to pin 7 (see note 3)

(III) Dual line TTL drive:

See Figure 6 on page 123 for drive connection diagrams.
See Figure 7 on page 123 for TTL voltage states.

- Connect Pin 1 to supply (+20 VDC to +32 VDC)
- Connect Pin 9 to ground (see notes 2, 4)
- Select position "A" by applying TTL "High" to pin 7 and TTL "Low" to pin 8 (see note 3)
- Select Position "B" by applying TTL "Low" to pin 7 and TTL "High" to pin 8 (see note 3)

Notes:

1. Pin 9 does not need to be grounded for the switch to operate in standard drive mode. If pin 9 is not grounded, the position indicators will only function while the appropriate drive has ground applied. Therefore, if a pulse drive is used and continuous indicator operation is required, pin 9 must be grounded.
2. For TTL drive, pin 9 must be grounded.
3. After the RF path is switched and latched, the drive current is interrupted by the electronic position-sensing circuitry. Pulsed control is not necessary, but if implemented, the pulse width must be 15 ms minimum to ensure that the switch is fully latched.
4. In addition to the quiescent current supplying the electronic position-sensing circuitry, the drive current flows out of pin 9 (during switching) when using TL drive.

Switches

Agilent 87222C/D/E insertions loss versus frequency

Agilent 87222C/D/E isolation versus frequency

Specifications

Agilent model	87222C	87222D	87222E
Features	Opto-electronic indicators and interrupts TLL/5V CMOS compatible Unterminated		
Impedance	50Ω	50Ω	50Ω
Frequency range	DC to 26.5 GHz	DC to 40 GHz	DC to 50 GHz
Insertion loss (dB)	$0.2 \mathrm{~dB}+0.025$ freq (GHz)	$0.2 \mathrm{~dB}+0.025$ freq (GHz)	$0.15 \mathrm{~dB}+0.02$ freq (GHz)
SWR	$\begin{aligned} & \text { <1.10 DC to } 2 \mathrm{GHz} \\ & \text { <1.15 } 2 \text { to } 4 \mathrm{GHz} \\ & <1.254 \text { to } 12.4 \mathrm{GHz} \\ & \text { <1.40 } 12.4 \text { to } 20 \mathrm{GHz} \\ & <1.6520 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \text { <1.30 DC to } 12.4 \mathrm{GHz} \\ & \text { <1.40 } 12.4 \text { to } 25 \mathrm{GHz} \\ & <1.7025 \text { to } 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \text { <1.30 DC to } 12.4 \mathrm{GHz} \\ & \text { <1.40 } 12.4 \text { to } 20 \mathrm{GHz} \\ & \text { <1.50 } 20 \text { to } 30 \mathrm{GHz} \\ & <1.6030 \text { to } 40 \mathrm{GHz} \\ & <1.7040 \text { to } 50 \mathrm{GHz} \end{aligned}$
Isolation (dB)	$120 \mathrm{~dB}-2.0 \times$ frequency (GHz)	DC to 26.5 GHz: $120 \mathrm{~dB}-2.0 \mathrm{x}$ frequency (GHz) 26.5 to $40 \mathrm{GHz}: 60 \mathrm{~dB}$	DC to 26.5 GHz : 120 dB -2.0 x frequency (GHz) 26.5 to $50 \mathrm{GHz}: 60 \mathrm{~dB}$
Input power Average Peak ${ }^{1}$	$\begin{aligned} & 1 \mathrm{~W} \\ & 50 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~W} \\ & 50 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~W} \\ & 50 \mathrm{~W} \end{aligned}$
Switching speed (max)	15 ms	15 ms	15 ms
Repeatability (max) ${ }^{2}$	0.03 dB	0.03 dB	0.03 dB DC to 40 GHz $<0.05 \mathrm{~dB}$ typical 40 to 50 GHz
Life (min)	5 million cycles	5 million cycles	5 million cycles
RF connectors	SMA (f)	2.92 mm (f)	2.4 mm (f)

Options

100	Solder terminals in addition to ribbon cable
$\mathbf{2 0 1}$	Mounting bracket; assembly required

[^15]

Table A. Drive control alternatives

RF path	(I) Standard drive voltage		(II) Single line TTL/5V CMOS drive voltage		(III) Dual line TTL/5V CMOS drive voltage	
	Drive A Pin 3	Drive B Pin 5	TTL Drive A Pin 7	TTL Drive B Pin 8	TTL Drive A Pin 7	TTL Drive B Pin 8
Position A 1 to 2, 3 to 4	Ground	Open	High	High	High	Low
Position B 2 to 3, 1 to 4	Open	Ground	Low	High	Low	High

Specifications

Specifications describe the instrument's warranted performance. Supplemental and typical characteristics are intended to provide information useful in applying the instrument by giving typical, but not warranted performance parameters.

Table B. Standard switch drive specifications

Parameter	Conditions	Min	Nom	Max	Units
Supply voltage		20	24	32	V
Supply current, Icc	Switching: Pulse width $>15 \mathrm{~ms}: ~ V c c=24 \mathrm{VDC}$		200	mA	
Supply current (Ouiescent)		25	50	mA	

Table C. TTL Specific drive specifications

Parameter	Conditions	Min	Nom	Max
High level input		3	7	
Low level input			0.8	
Max high input current	V Vcc $=M a x$			
	Vinput $=3.85 \mathrm{VDC}$	1	V	

Switches

High Performance Transfer Switch (continued)

Product outlines

15

Dimensions are in millimeters and (inches) nominal unless otherwise specified. For further information see publication 5968-2216E.

Applications

Figures 8 and 9 show the Agilent 87406B and 87606B configured for blocking 2×4 and 3×3 applications. With outstanding repeatability and life greater than 5 million cycles, these switches enhance measurement confidence and reduce cost of ownership. In addition, the matrix switch has the versatility to provide single pole multiple throw signal routing up to 1×5 (SP5T).

Figure 8. Matrix switch configured for a 2×4 blocking application (RF Path 5 to 2 shown)

Figure 9. Matrix switch configured for a 3×3 blocking application (RF Path 5 to 1 shown)

Switches

High Performance Matrix Switch (continued)

Driving the switch

DC power connection

- Connect pin 1 to supply (+20 V DC to +32 V DC)
- Connect pin 15 to chassis ground to enable the electronic position-indicating circuitry and drive logic circuitry. WARNING: DAMAGE TO SWITCH WILL OCCUR IF PIN 15 IS NOT GROUNDED

RF path selection

To connect any two RF ports, apply control signals to the corresponding drive pins as shown below:

Table 1. Agilent 87406B RF port drive pin control data

$\mathbf{R F}$ port	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$
$\mathbf{1}$	3,13	3,11	3,9	3,7	3,5
$\mathbf{2}$	5,13	5,11	5,9		
$\mathbf{3}$	7,13	7,11	7,9		
$\mathbf{4}$	9,13	9,11			
$\mathbf{5}$	11,13				

Using this table, select (close) the desired RF path by connecting ground (standard and Option 100) or applying TL "High" (Option T24 or Option TOO) to the corresponding "drive" pins.

Unselect (open) RF paths by disconnecting ground (standard and Option 100) or applying TTL "Low" (Option T24 or Option T00) to the corresponding "drive" pins.

Example: Configure the RF path from port 2 to port 5

Using the data in Table 1, select pins 5 and 11 while ensuring no other pins are selected:

RF port	1	2	3	4	5	6	Open All*
Drive pin	3	5	7	9	11	13	16
Standard, Option 100	U	G	U	U	G	U	$\chi^{* *}$
Options T24, T00	L	H	L	L	H	L	$\chi^{* *}$

U = Ungrounded, G = Grounded, L = TTL "Low", H = TTL "High", X = Don't care

* "Open All Ports" is not available with Option 100 and Option T00.
** "Open all RF Ports" feature is overridden by port selection.

Selected ports will be closed and unselected ports will be automatically opened by the internal logic circuits when new port selections are made. After the RF port is switched and magnetically latched, the solenoid current is interrupted by the solid-state position sensing circuitry. The drive voltage must be maintained to avoid RF path disconnection by the internal logic. For this reason, pulsed drive is NOT recommended.

Open all RF ports

Unselecting all RF ports and selecting Pin 16 on standard and Option T24 opens all RF ports:

Drive pin	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{9}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{1 6}$
Standard	U	U	U	U	U	G	
Option T24	L	L	L	L	H		

$U=$ Ungrounded, $G=$ Ground, $L=T T L$ "Low", $H=$ TTL "High"
Selecting an RF port will override the "open all RF ports" for each selected port. If desired, pin 16 can be wired directly to ground (Option 024) or TTL "High" (Option T24) to open all RF ports at power-up.

Break-before-make

Remove the control inputs from the undesired port, then select the desired port. The internal logic will unselect the old port automatically upon application of the new port selection.

Make-before-break

Select the new RF port while maintaining the control input on the original ports. Allows 15 ms for the switching action to be completed, then unselect the original port; the original port will be automatically disconnected by the internal logic.

RF path selection

Close an RF port

To connect any two RF ports, apply control signals to the corresponding drive pins as shown below:

Table 2. Agilent 87606B "Close" RF port control data

$\mathbf{R F}$ port	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$
$\mathbf{1}$	3,13	3,11	3,9	$\mathbf{2}$
$\mathbf{2}$	5,13	5,11	5,9	5,7
$\mathbf{3}$	7,13	7,11	7,9	
$\mathbf{4}$	9,13	9,11		
$\mathbf{5}$	11,13			

Using Table 2, select (close) the desired RF path by connecting ground to the corresponding "drive" pins.

Open an RF port

To open RF ports, apply control signal to the corresponding drive pins as shown below:

Table 3. Agilent 87606B "Open" RF port control data

RF port	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Drive pin	3	5	7	9	11	13

Using Table 3, unselect (open) the desired RF path by connecting ground to the corresponding "drive" pins.

Switches

High Performance Matrix Switch (continued)

Example: Configure the RF path from port 2 to port 5:

Using the data in Tables 1 and 2, close ports 2 and 5 while opening all other ports ($1,3,4,6$); ground pins $5,11,4,8,10,14$; all other drive pins must be removed from ground. Another method is to first apply ground to pin 16, with all other drive pins ($3-14$) ungrounded, for 15 milliseconds. This will open all paths. Next, apply ground to pins 5 and 11 , to close ports 2 and 5 .

RF port	1		2		3		4		5		6	
Drive pin	3	4	5	6	7	8	9	10	11	12	13	4
Standard, Option 100	U	G	G	U	U	G	U	G	G	U	U	G

$U=$ Ungrounded, $G=$ Grounded

Removing all drive pins $(3-14)$ from ground, and grounding pin 16 will open all RF paths. Simultaneously grounding any "RF port close" pin and pin 16 will cause rapid cycling and premature failure of the switch.

Break-before-make

Open the undesired RF path. After 15 ms (minimum), close the new RF port(s).

Make-before-break

Close the new RF port(s). After 15 ms (minimum), open the undesired RF port(s).

Switch drive specifications

Parameter	Conditions	Min	Nom	Max	Units
Supply voltage, Vcc		20	24	32	V
Switching current	$\mathrm{Vcc}=24 \mathrm{VDC}$		$200{ }^{1}$		mA
Standby current (quiescent)		25		50	mA
Options T24/T00					
High level input		3		7	V
Low level input				0.8	V
Max high input current	Vcc $=$ Max ; Vinput $=3.85$ VDC		1	1.4	mA

[^16]
Product outline

Option 100/T00 solder terminals

Dimensions are in millimeters (inches) nominal,unless otherwise specified.

Switches

High Performance Matrix Switch (continued)

Matrix

Agilent model	87406B	87606B
Features $3 \times 3,2 \times 4$ and 1×5 blocking matrix configurations Make-before-break or break-before-make operation Terminated Ports		
	Opto electronic indicators and interrupts ${ }^{1}$	Self interrupting drive circuit
Impedance	50Ω	
Frequency range	DC to 20 GHz	
Insertion loss (dB)	$0.34 \mathrm{~dB}+0.033 \mathrm{x}$ freq (GHz) maximum	
SWR	<1.21 from DC to 4 GHz <1.35 from 4 to 10 GHz <1.5 from 10 to 15 GHz <1.7 from 15 to 18 GHz <1.9 from 18 to 20 GHz	
Isolation (dB)	$\begin{aligned} &>100 \mathrm{~dB} \text { to } 12 \mathrm{GHz} \\ &>80 \mathrm{~dB} \text { from } 12 \text { to } 15 \mathrm{GHz} \\ &>70 \mathrm{~dB} \text { from } 15 \text { to } 20 \mathrm{GHz} \end{aligned}$	
Input power Average Peak ${ }^{2}$	$\begin{gathered} 1 \text { W } \\ 50 \mathrm{~W}(10 \mu \mathrm{~s} \max) \end{gathered}$	
Switching time (max)	15 ms	
Repeatability $(\max)^{3}$ Life (min) RF connectors	0.03 dB 5 million cycles SMA (f)	

Agilent model number	Options
Agilent 87406B	100: Solder terminals to replace ribbon cable T24: $\Pi L / 5 \mathrm{~V}$ CMOS compatibility (requires 24 VDC power supply)
Agilent 87606B	$\mathbf{1 0 0}$: Solder terminals to replace ribbon cable

${ }^{1}$ Provides position sensing when used with Agilent 87130A/70611A switch driver or customer supplied external circuitry.
${ }^{2}$ Not to exceed 1 W average.
${ }^{3}$ Measured at $25^{\circ} \mathrm{C}$.

Terminations (Loads)

Agilent 909 series fixed loads

The Agilent 909 series are fixed low-reflection loads for terminating a 50Ω (75 Ω for Agilent 909E) coaxial system in its characteristic impedance. Whereas the Agilent 909A is designed for general purpose applications, the Agilent 909C, D, E, F series are intended for use as calibration standards. All loads are widely used as accessories for both broadband and narrowband measurement instruments, with models covering DC to 26.5 GHz .

Agilent 909C

Agilent 909D

Agilent 909F

Terminations (Loads)

Fixed loads (continued)

Selection guide

Connector type		APC-7	Type-N (m)	Type-N (f)	3.5 mm (m)	3.5 mm (f)	2.4 mm (m)	2.4 mm (f)
50Ω	DC to 2 GHz	909C	909C Option 012	909C Option 013				
	DC to 18 GHz	$\begin{aligned} & 909 \mathrm{~A} \\ & 909 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { 909A Option } 012 \\ & \text { 909F Option } 012 \end{aligned}$	909A Option 013 909F Option 013				
	DC to 26.5 GHz				$\begin{aligned} & \text { 909D } \\ & \text { 909D Option } 040 \end{aligned}$	909D Option 011		
	DC to 50 GHz						85138A	85138B
75Ω	DC to 3 GHz		909E	909E Option 011				

Specifications

Agilent model	Impedance	Frequency range (GHz)	Specification (VSWR)	Maximum power	Connector type	Length mm (in)	Diameter mm (in)	Shipping weight kg (lb)
909A	50Ω	DC to 18	DC to $4 \mathrm{GHz}: 1.05$ 4 to 12.4 GHz : 1.1 12.4 to $18 \mathrm{GHz}: 1.25$	2 W avg. 300 W peak	APC-7	51 (2)	23 (0.9)	0.2 (0.5)
909A Option 012	50Ω		DC to $4 \mathrm{GHz}: 1.06$ 4 to $12.4 \mathrm{GHz}: 1.11$ 12.4 to 18 GHz: 1.30		$N(m)$	51 (2)	21 (0.8)	
909A Option 013	50Ω				N (f)	51 (2)	16 (0.63)	
909 C	50Ω	DC to 2	1.005	1/2 W avg. 100 W peak	APC-7	51 (2)	22 (0.9)	
909C Option 012	50Ω		1.01		$\mathrm{N}(\mathrm{m})$	51 (2)	21 (0.8)	
909C Option 013	50Ω		1.01		N (f)	51 (2)	17 (0.7)	
909D	50Ω	DC to 26.5	$\begin{aligned} & \text { DC to } 3 \mathrm{GHz}: 1.02 \\ & 3 \text { to } 6 \mathrm{GHz}: 1.036 \\ & 6 \text { to } 26.5 \mathrm{GHz}: 1.12 \end{aligned}$	2 W avg. 100 W peak	$3.5 \mathrm{~mm}(\mathrm{~m})$	23 (0.9)	$9(0.4)$	
909D Option 011	50Ω				3.5 mm (f)	23 (0.9)	8 (0.3)	
909D Option 040	50Ω		$\begin{aligned} & \text { DC to } 4 \mathrm{GHz}: 1.02 \\ & 4 \text { to } 6 \mathrm{GHz}: 1.036 \\ & 6 \text { to } 26.5 \mathrm{GHz}: 1.12 \end{aligned}$		3.5 mm (m)	23 (0.9)	8 (0.3)	
909E	75Ω	DC to 3	DC to 2 GHz: 1.01 2 to $3 \mathrm{GHz}: 1.02$	1/2 W avg. 100 W peak	$\mathrm{N}(\mathrm{m})$	51 (2)	21 (0.8)	
909E Option 011	75Ω				N (f)	51 (2)	16 (0.6)	
909F	50Ω	DC to 18	DC to $5 \mathrm{GHz}: 1.005$ 5 to 6 GHz: 1.01 6 to $18 \mathrm{GHz}: 1.15$		APC-7	51 (2)	22 (0.9)	
909F Option 012	50Ω		DC to $2 \mathrm{GHz}: 1.007$ 2 to $3 \mathrm{GHz}: 1.01$		$N(m)$	51 (2)	21 (0.8)	
909F Option 013	50Ω		3 to $6 \mathrm{GHz}: 1.02$ 6 to 18 GHz: 1.15		N (f)	51 (2)	17 (0.7)	
85138A	50Ω	DC to 50	DC to 26.5 GHz: 1.065 26.5 to $40 \mathrm{GHz}: 1.118$ 40 to 50 GHz : 1.220		2.4 mm (m)	-	-	-
85138B					2.4 mm (f)	-	-	-

Overview

Impedance Test Accessories are designed to make measurements of passive components simple and reliable when using the Agilent RF LCR meters or impedance analyzers. Agilent Technologies 16191A, 16192A, 16194A, 16196A/B/C and 16197A series of test fixtures allow impedance measurements of SMD passive components up to 3 GHz .

Agilent 16191A bottom electrode SMD test fixture

This test fixture is designed for impedance evaluations of bottom electrode SMD components. The minimum SMD size that this fixture is adapted to evaluate is $2(\mathrm{~L})[\mathrm{mm}]$.

Agilent 16192A parallel electrode SMD test fixture

This test fixture is designed for impedance evaluations of parallel electrode SMD components. The minimum SMD size that this fixture is adapted to evaluate is $1(\mathrm{~L})$ [mm].

Agilent 16194A high temperature component test fixture

This test fixture is designed for measuring both axial/radial leaded devices and SMD components within the temperature range from -55 to $+200^{\circ}$ (recommended to be used with Agilent 4291B's high temperature test head).

Agilent 16196A/B/C parallel electrode SMD test fixture

This test fixture is designed for impedance evaluations of parallel electrode SMD components. It accommodates small SMD sizes : 0603 (inch)/1608(mm), 0402(inch)/1005(mm) or 0201 (inch)/ 0603(mm). In addition, it provides highly repeatable measurements and achieves stable frequency characteristics at 3 GHz .

17
 Agilent 16197A bottom electrode SMD test fixture

This test fixture is designed for impedance evaluations of bottom electrode SMD components up to 3 GHz . This test fixture accommodates various sizes of SMDs; as small as $1005(\mathrm{~mm}) / 0402$ (inch) and as large as $3225(\mathrm{~mm}) / 1210$ (inch). Accommodation of the $0603(\mathrm{~mm}) / 0201$ (inch) SMD is available with Option 001.

Agilent 16191A

Agilent 16192A

Agilent 16194A

Agilent 16196A/B/C

Agilent 16197A

Impedance Test Accessories

Impedance Test Accessories (continued)

Specifications

Agilent model	Frequency range	Terminal connector	Maximum voltage peak max (AC + DC)	Operating temperature	Electrode configuration	Device under test size
$\mathbf{1 6 1 9 1 A}$	DC to 2 GHz	7 mm	$\pm 40 \mathrm{~V}$	-55 to $+85^{\circ} \mathrm{C}$	Bottom	2.0 to 12 mm (length)
$\mathbf{1 6 1 9 2 A}$	DC to 2 GHz	7 mm	$\pm 40 \mathrm{~V}$	-55 to $+85^{\circ} \mathrm{C}$	Parallel	1.0 to 20 mm (length)
$\mathbf{1 6 1 9 4 A}$	DC to 2 GHz	7 mm	$\pm 40 \mathrm{~V}$	-55 to $+200^{\circ} \mathrm{C}$	Bottom	See figure below
$\mathbf{1 6 1 9 6 A}$	DC to 3 GHz	7 mm	$\pm 40 \mathrm{~V}$	-55 to $+85^{\circ} \mathrm{C}$	Parallel	0603 (inch) $/ 1608(\mathrm{~mm})$
$\mathbf{1 6 1 9 6 B}$	DC to 3 GHz	7 mm	$\pm 40 \mathrm{~V}$	-55 to $+85^{\circ} \mathrm{C}$	Parallel	0402 (inch) $/ 1005(\mathrm{~mm})$
$\mathbf{1 6 1 9 6 C}$	DC to 3 GHz	7 mm	$\pm 40 \mathrm{~V}$	-55 to $+85^{\circ} \mathrm{C}$	Parallel	0201 (inch) $/ 0603(\mathrm{~mm})$
$\mathbf{1 6 1 9 7 A}$	DC to 3 GHz	7 mm	$\pm 40 \mathrm{~V}$	-55 to $+85^{\circ} \mathrm{C}$	Bottom	0.6 to 3.2 mm (length)

Agilent 16191A

Agilent 16192A

Agilent 16197A

Agilent 16194A

Agilent 4287A
RF LCR meter $\mathbf{1} \mathbf{M H z}$ to $\mathbf{3} \mathbf{G H z}$

Agilent 4396B
network/spectrum/impedance analyzer
100 kHz to $1.8 \mathrm{GHz} / 2 \mathrm{~Hz}$ to $1.8 \mathrm{GHz} /$ 100 kHz to 1.8 GHz

Agilent 11974 series

Agilent 11974 series preselected millimeter mixers

Eliminate the need for signal identification at millimeter frequencies. The Agilent 11974 series mixers are preselected from 26.5 to 75 GHz for faster, easier testing of millimeter devices and systems. Preselection reduces mixer overload from broadband signals and reduces radiation of local oscillator harmonics back to the device under test. Equipment operators can quickly locate true signals. Also, software development for automated measurements is greatly simplified.

These mixers feature advanced bariumferrite technology and come with a stand alone power supply. They are particularly useful for broadband millimeter signal analysis, millimeter electromagneticinterference (EMI) measurements, and unattended monitoring of millimeter signals.

Compatibility

Agilent E4440A/46A/48A PSA series, E4407B ESA, 856xEC/E series spectrum analyzers, and Agilent 70907B external mixer interface modules are fully compatible with the Agilent 11974 series.

Agilent 11970 series harmonic mixers

These waveguide mixers are general purpose harmonic mixers. They employ a dual-diode design to achieve flat frequency response and low conversion loss. This is achieved without external DC bias or tuning stubs. Manual operation and computer controlled hardware operation are simplified because mixer bias and tuning adjustment are not required.

Agilent 11970

 series mixer50 to 75 GHz sweep without preselection

50 to 75 GHz sweep using Agilent 11974

Specifications

Agilent model ${ }^{1}$		Frequency range (GHz)	Sensitivity (displayed avg. noise level/10 Hz) (dBm)	Calibration accuracy (dB)	Image rejection (dBc)

[^17]
Specifications

Agilent model	Frequency range (GHz)	Lo harmonic number	Maximum conversion loss (dB)	Noise level (dB) $\mathbf{1 ~ k H z ~ R B W ~}$	Frequency $\mathbf{1}^{\mathbf{1}}$ response (dB)	$\mathbf{1 ~ d B ~ G a i n ~}{ }^{\mathbf{2}}$ compression (dBm)
$\mathbf{1 1 9 7 0 K}$	18 to 26.5	$6+$	24	-105	± 1.9	-3
$\mathbf{1 1 9 7 0 A}$	26.5 to 40	$8+$	26	-102	± 1.9	-5
$\mathbf{1 1 9 7 0 0}$	33 to 50	$10+$	28	-101	± 1.9	-7
$\mathbf{1 1 9 7 0 U}$	40 to 60	$10+$	28	-101	± 1.9	-7
$\mathbf{1 1 9 7 0 V}$	50 to 75	$14+$	40	-92	± 2.1	-3
$\mathbf{1 1 9 7 0 W}$	75 to 110	$18+$	-85	± 3.0	-1	

${ }^{1}$ Frequency of the mixers is reduced by 1 dB with $L O$ input power of 14.5 to 16.0 dBm .
${ }^{2}$ Typical characteristic.

Features

- Preselected mixers to eliminate signal identification
- State-of-the-art technology
- Easier automated measurements
- Low conversion loss
- Individually amplitude calibrated
- No bias or tuning adjustments
- High 100 mW safe input level

Compatibility

The Agilent 11970 series mixers extend the frequency range of the Agilent E4440A/46A/48A PSA series high-performance spectrum analyzers, E4407B ESA and 856xEC/E portable spectrum analyzers up to 110 GHz . The Agilent 11970 series mixers are also compatible with the Agilent 8566B spectrum analyzer (used with the Agilent 11975A amplifier); and the Agilent 70000 modular measurement system (used with the Agilent 70907A, B external mixer interface module, or the Agilent 70909A and 70910A RF sections).

Agilent 11970 and 11974 series specifications

IF range: DC to 1.3 GHz
L0 amplitude range: +14 to $+16 \mathrm{~dB} ;+16$ optimum
Calibration accuracy: $\pm 2.0 \mathrm{~dB}$ for Agilent 11970
series with optimum LO amplitude
Typical RF input SWR: $<2.2: 1,<3.0: 1$ for Agilent 11974 series
Bias requirements: none
Typical odd-order harmonic suppression:
$>20 \mathrm{~dB}$ (does not apply to Agilent 11974 series)
Maximum CW RF input level: +20 dBm
$(100 \mathrm{~mW}),+25 \mathrm{dBm}$ for Agilent 11974 series
Maximum peak pulse power: $24 \mathrm{dBm}(250 \mathrm{~mW})$
with $<1 \mu$ s pulse (avg. power $=+20 \mathrm{dBm}$)

Bandwidth: 100 MHz minimum (Agilent 11974 series only) Environmental: Meets MIL-T-28800C, Type III, Class 3, Style C IF/LO connectors: SMA female
Tune IN connector: BNC
LO range: 3.0 to 6.1 GHz

Ordering information

Agilent 11974A: 26.5 to 40 GHz preselected mixer
Agilent 119740: 33 to 50 GHz preselected mixer
Agilent 11974U: 40 to 60 GHz preselected mixer
Agilent 11974V: 50 to 75 GHz preselected mixer
Option 003: Delete power supply
(Agilent 11974 series only)
Agilent 11970K: 18 to 26.5 GHz mixer
Agilent 11970A: 26.5 to 40 GHz mixer
Agilent 119700: 33 to 50 GHz mixer
Agilent 11970U: 40 to 60 GHz mixers
Agilent 11970V: 50 to 75 GHz mixers
Agilent 11970W: 75 to 110 GHz mixers
Agilent 11970
Option 009: Mixer connection set adds three-1 meter low-loss SMA cables, wrench, allen driver for any Agilent 11970 series mixer. Carrying case with storage space for cables and tools included.
Agilent 11975A: 2 to 8 GHz amplifier
Agilent 281A, B: Coaxial to waveguide adapters
R281A: 26.5 to $40 \mathrm{GHz}, 2.4 \mathrm{~mm}$ (f)
R281B: 26.5 to $40 \mathrm{GHz}, 2.4 \mathrm{~mm}$ (m)
0281A: 33 to $50 \mathrm{GHz}, 2.4 \mathrm{~mm}$ (f)
0281B: 33 to $50 \mathrm{GHz}, 2.4 \mathrm{~mm}(\mathrm{~m})$
U281A: 40 to $60 \mathrm{GHz}, 1.85 \mathrm{~mm}$ (f)
U281B: 40 to $60 \mathrm{GHz}, 1.85 \mathrm{~mm}(\mathrm{~m})$
V281A: 50 to $64 \mathrm{GHz}, 1.85 \mathrm{~mm}$ (f)
V281B: 50 to $64 \mathrm{GHz}, 1.85 \mathrm{~mm}(\mathrm{~m})$

Network Analyzer Accessories and Cal Kits

Network Analyzer Accessories and Cal Kits 144
Coaxial Mechanical Calibration KitsWaveguide MechanicalCalibration Kits171
Coaxial Electronic Cal Kits 179
Mechanical Verification Kits 186
Scalar Network Analyzer
Accessories 192

Network Analyzer Accessories and Cal Kits

Network Analyzer Accessories and Cal Kits

Overview

Accessories for the Agilent ENA, ENA-L, PNA, and PNA-L series network analyzers include a variety of calibration kits, verification kits, cables, and adapters from DC to 110 GHz .

Calibration kits

Error-correction procedures require that the systematic errors in the measurement system be characterized by measuring known devices (standards) on the system over the frequency range of interest. Agilent offers two types of calibration kits: mechanical and electronic.

Electronic calibration kits

ECal modules consist of a connectorspecific electronic calibration standard. Modules are available with Type-F, Type-N (50 and 75 ohm), $7-16,7 \mathrm{~mm}, 3.5 \mathrm{~mm}$, $2.92 \mathrm{~mm}, 2.4 \mathrm{~mm}$, and 1.85 mm connectors. All 2-port modules, except 7 mm , have one male and one female connector. Options exist for modules with two male or two female connectors. Agilent also makes 4-port ECal modules with different connector types and various combinations of male and female connectors. ECal modules are controlled directly by the Agilent ENA, ENA-L, PNA, and PNA-L series network analyzers via its USB port, and are controlled via the 85079B VNA interface kit when used with the Agilent 8753 network analyzers.

Mechanical calibration kits

All network analyzer coaxial mechanical calibration kits contain precision standard devices to characterize the systematic errors of the Agilent ENA, ENA-L, PNA, and PNA-L series network analyzers. Many mechanical calibration kits also contain adapters for test ports and a torque wrench for proper connection.

Verification kits

Measuring known devices, other than the calibration standards, is a straightforward way of verifying that the network analyzer system is operating properly. Agilent offers verification kits that include precision airlines, mismatch airlines, and precisionfixed attenuators. Traceable measurement data is shipped with each kit on disk. Verification kits may be recertified by Agilent Technologies. This recertification includes a new measurement of all standards and new data with uncertainties.

Scalar network analyzer accessories

The basic components of any scalar system include a scalar analyzer, a swept source, a directional bridge or coupler, and detectors. Agilent scalar accessories, when used with the 8757D network analyzer, provide measurement coverage from 10 MHz to 50 GHz.

Network Analyzer Accessories and Cal Kits

Coaxial mechanical calibration kits

Connector	Frequency range (GHz)	Type	VNA calibration accuracy	Agilent model	Available options	Page
Type-F (75 ohm)	DC to 3	Economy	5\%-1\%	85039B	1A7, A6J, UK6, 00M, 00F, M0F	147
Type-N (75 ohm)	DC to 3	Economy	5\%-1\%	85036E	UK6	148
Type-N (75 ohm)	DC to 3	Standard	5\%-1\%	85036B	1A7, A6J, UK6	148
Type-N (50 ohm)	DC to 6	Economy	5\%-1\%	85032E	1A7, A6J, UK6	149, 150
Type-N (50 ohm)	DC to 9	Standard	5\%-1\%	85032F	1A7, A6J, UK6, 100, 200, 300, 500*	151
Type-N (50 ohm)	DC to 18	Economy	5\%-1\%	85054D	1A7, A6J, UK6	153
Type-N (50 ohm)	DC to 18	Standard	2\% - 0.3\%	85054B	UK6	152
7-16	DC to 7.5	Standard	2\%	85038A	N/A	154
7-16 (female)	DC to 7.5	Standard	2\%	85038F	N/A	154
7-16 (male)	DC to 7.5	Standard	2\%	85038M	N/A	154
7 mm	DC to 6	Economy	2\% - 0.3\%	85031B	1A7, A6J, UK6	155
7 mm	DC to 18	Economy	5\%-1\%	85050D	N/A	155
7 mm	DC to 18	Standard	2\% - 0.05\%	85050B	N/A	156
7 mm	DC to 18	Precision	0.3\% - 0.05\%	85050C	UK6	157
3.5 mm	DC to 9	Standard	5\%-1\%	85033E	1A7, A6J, UK6, 100, 200, 300, 400, 500	158
3.5 mm	DC to 26.5	Economy	5\%-1\%	85052D	1A7, A6J, UK6	159
3.5 mm	DC to 26.5	Standard	3\%-0.5\%	85052B	1A7, A6J, UK6	160
3.5 mm	DC to 26.5	Precision	2\% - 0.5\%	85052C	1A7, A6J, UK6	161
2.92 mm	DC to 50	Economy	11\% - 4\% (Option 001 65\% - 3\%)	85056K	UK6, 001	162, 163
2.4 mm	DC to 50	Economy	5\%-1\%	85056D	UK6	164
2.4 mm	DC to 50	Standard	4\% - 0.5\%	85056A	A6J, UK6	165
1.85 mm	DC to 67	Economy		85058E	1A7, A6J, UK6	166
1.85 mm	DC to 67	Standard		85058B	1A7, A6J, UK6	167, 168
1 mm	DC to 110	Precision	5\%-1\%	85059A	1A7, A6J, UK6	169, 170

Waveguide mechanical calibration kits

Connector	Frequency range (GHz)	Type	VNA calibration accuracy	Agilent model	Available options	Page
WR-90	8.2 to 12.4	Precision	0.3\%-0.05\%	X11644A	1A7, A6J, UK6	171
WR-62	12.4 to 18	Precision	0.3\% - 0.05\%	P11644A	1A7, A6J, UK6	172
WR-42	18 to 26.5	Precision	0.3\% - 0.05\%	K11644A	1A7, A6J, UK6	173
WR-28	26.5 to 40	Precision	0.3\%-0.05\%	R11644A	1A7, A6J, UK6	174
WR-22	33 to 50	Precision	0.3\%-0.05\%	011644A	1A7, A6J, UK6	175
WR-19	40 to 60	Precision	0.3\%-0.05\%	U11644A	1A7, A6J, UK6	176
WR-15	50 to 75	Precision	0.3\%-0.05\%	V11644A	1A7, A6J, UK6	177
WR-10	75 to 110	Precision	0.3\% - 0.05\%	W11644A	1A7, A6J, UK6	178

Option descriptions

1A7	ISO 17025 compliant calibration
A6J	ANSI Z540 compliant calibration
UK6	Commercial calibration certificate with test data
00M	Includes male standards and male-male adapter
00F	Includes female standards and female-female adapter
MOF	Includes male and female standards \& adapters

A6J ANSI Z540 compliant calibration
00M
00F Includes female standards and female-female adapter
MOF Includes male and female standards \& adapters

Adds 2.4 mm sliding load and 2.4 mm gauges Includes female-female adapter Includes male-male adapter Includes male-female adapter
Adds four 3.5 mm to Type- N adapters
Adds four 7 mm to 3.5 mm adapters
Adds four 7 mm to Type-N adapters

Network Analyzer Accessories and Cal Kits

Network Analyzer Accessories and Cal Kits (continued)

Coaxial electronic calibration kits (ECal)

Connector	Frequency range (GHz)	Type	VNA calibration accuracy	Agilent model	Available options	Page
Type-F (75 ohm)	300 kHz to 3 GHz	2-port	N/A	85099C	UK6, 00F, 00M, M0F, 00A	181
Type-N (75 ohm)	300 kHz to 3 GHz	2-port	N/A	85096C	UK6, 00F, 00M, M0F, 00A	182
Type-N (50 ohm)	300 kHz to 9 GHz	2-port	1\%-0.1\%	85092C	1A7, A6J, UK6, 00F, 00M, M0F, 00A	182
Type-N (50 ohm)	300 kHz to 13.5 GHz	4-port		N4431B Option 020	1A7, A6J, UK6	184
Type-N (50 ohm)	300 kHz to 18 GHz	2-port		N4690B	1A7, A6J, UK6, 00F, 00M, MOF, 00A	182
Type-N (50 ohm)	300 kHz to 18 GHz	4-port		N4432A Option 020	N/A	
7-16	300 kHz to 7.5 GHz	2-port	N/A	85098C	UK6, 00F, 00M, M0F, 00A ${ }^{1}$	183
7 mm	300 kHz to 9 GHz	2-port	1\%-0.1\%	85091C	1A7, A6J, UK6	183
7 mm	300 kHz to 18 GHz	2-port		N4696B	1A7, A6J, UK6	183
7 mm	300 kHz to 18 GHz	4-port		N4432A Option 030	N/A	
3.5 mm	300 kHz to 9 GHz	2-port	2\% - 0.2\%	85093C	1A7, A6J, UK6, 00F, 00M, M0F, 00A ${ }^{2}$	182
3.5 mm	300 kHz to 13.5 GHz	4-port		N4431B Option 010	1A7, A6J, UK6	184
3.5 mm	300 kHz to 20 GHz	4-port		N4433A Option 010	N/A	
3.5 mm	300 kHz to 26.5 GHz	2-port		N4691B	1A7, A6J, UK6, 00F, 00M, M0F, 00A ${ }^{2}$	182
2.92 mm	10 MHz to 40 GHz	2-port		N4692A	1A7, A6J, UK6, 00F, 00M, M0F, 00A ${ }^{3}$	183
2.4 mm	10 MHz to 50 GHz	2-port		N4693A	1A7, A6J, UK6, 00F, 00M, M0F, 00A 4	183
1.85 mm	10 MHz to 67 GHz	2-port		N4694A	1A7, A6J, UK6, 00F, 00M, M0F, 00A ${ }^{5}$	184
VNA interface kit	N/A	N/A	N/A	85097B	N/A	180

Mechanical verification kits

	Frequency range (GHz)	Type	VNA calibration Canccuracy	Agilent model	Available options	Page

Option descriptions

1A7	ISO 17025 compliant calibration
A6J	ANSI Z540 compliant calibration
UK6	Commercial calibration certificate with test data
OOM	Includes male standards and male-male adapter
OOF	Includes female standards and female-female adapter
MOF	Includes male and female standards \& adapters
00A	Add Type-N adapters
OOA	Add 7-16 adapters

00A ${ }^{2}$ Add 3.5 mm adapters
00A ${ }^{3}$ Add 2.92 mm adapters
00A 4 Add 2.4 mm adapters
00A ${ }^{5}$ Add 1.85 mm adapters
001 Adds data for Agilent 8702 lightwave component analyzer
010 Four 3.5 mm (f) connectors
020 Four Type-N, 50 ohm (f) connectors
030 Four 7 mm connectors

Network Analyzer Accessories and Cal Kits

Agilent 85039B calibration kit, Type-F

The Agilent 85039B 75Ω Type-F calibration kit is used to calibrate Agilent 8753, and Agilent ENA-L series network analyzers for measurements of components with 75Ω Type-F connectors up to 3 GHz .

Electrical specifications

75Ω Type-F device	Specifications	Frequency (GHz)
Male load, female load	Return loss $\geq 45 \mathrm{~dB}(\rho \leq 0.006)$	DC to ≤ 1
	Return loss $\geq 38 \mathrm{~dB}(\rho \leq 0.013)$	>1 to ≤ 3
Male short ${ }^{\mathbf{1}, \text {, female short }}$	$\pm 0.60^{\circ}$ from nominal	DC to ≤ 1
	$\pm 1.00^{\circ}$ from nominal	>1 to ≤ 3
Male open 1, female open	$\pm 0.55^{\circ}$ from nominal	DC to ≤ 1
	$\pm 1.30^{\circ}$ from nominal	>1 to ≤ 3

Adapters

Type-F to Type-F	Return loss $\geq 40 \mathrm{~dB}(\rho \leq 0.013)$	$D C$ to ≤ 1
	Return loss $\geq 32 \mathrm{~dB}(\rho \leq 0.025)$	>1 to ≤ 3
Type-N to Type-F	Return loss $\geq 38 \mathrm{~dB}(\rho \leq 0.013)$	DC to ≤ 1
	Return loss $\geq 32 \mathrm{~dB}(\rho \leq 0.025)$	>1 to ≤ 3

Replaceable parts

Part Number	Description	85039B	Option 00M	Option 00F
$\mathbf{8 5 0 3 9 - 6 0 0 0 7}$	75 ohm Type-F male load	X	X	
$\mathbf{8 5 0 3 9 - 6 0 0 0 8}$	75 ohm Type-F male short	X	X	
$\mathbf{8 5 0 3 9 - 6 0 0 0 9}$	75 ohm Type-F male open	X	X	
$\mathbf{8 5 0 3 9 - 6 0 0 0 4}$	75 ohm Type-F female load	X		X
$\mathbf{8 5 0 3 9 - 6 0 0 0 3}$	75 ohm Type-F female short	X		X
$\mathbf{8 5 0 3 9 - 6 0 0 0 5}$	75 ohm Type-F female open	X		X
$\mathbf{8 5 0 3 9 - 6 0 0 0 6}$	75 ohm Type-F male to male adapter	X	X	
$\mathbf{8 5 0 3 9 - 6 0 0 0 2}$	75 ohm Type-F female to female adapter	X		X
$\mathbf{8 5 0 3 9 - 6 0 0 1 3}$	75 ohm Type-F female to Type-N male adapter	X		
$\mathbf{8 5 0 3 9 - 6 0 0 1 1}$	75 ohm Type-F male to Type-N female adapter	X		

Additional adapters available from Agilent but not included in the cal kit.

85039-60010	75 ohm Type-F male to Type-N male
$\mathbf{8 5 0 3 9 - 6 0 0 1 2}$	75 ohm Type-F male to Type-F fema

85039-60014 75 ohm Type-F female to Type-N female
${ }^{1}$ The specifications for the open and short are given as allowed deviation from the nominal model as defined in the standard definitions. See Table A-3 of the Service Guide for details.

Accessories

Agilent 86211A 75 ohm Type-N to Type-F adapter kit

Adapter kit provides Type-N to Type-F adapters necessary when measuring Type-F devices on a network analyzer with 75 ohm Type-N test ports.

Adapter kit

$\mathbf{8 6 2 1 1 A}$	75 ohm Type-N to Type-F adapter kit
	Type-F (f) to Type-F (f)
	Type-F (m) to Type-N (f)
	Type-F (m) to Type-N (m)

Network Analyzer Accessories and Cal Kits

Agilent 85036E economy calibration kit, Type-N, 75 ohm

The Agilent 85036E economy calibration kit contains precision Type-N (m) fixed termination and a one piece Type-N (m) open/short circuit. The kit is specified from DC to 3 GHz .

Electrical specifications

75 ohm device	Specifications	Frequency (GHz)
Type-N loads	Return loss $\geq 46 \mathrm{~dB}(\rho \leq 0.00501)$	DC to ≤ 2
	Return loss $\geq 40 \mathrm{~dB}(\rho \leq 0.01000)$	>2 to ≤ 3

Agilent 85036B calibration kit, Type-N, 75 ohm

The Agilent 85036B calibration kit contains precision Type-N standards used to calibrate Agilent network analyzers for measurement of devices with 75 ohm Type-N connectors. Standards include fixed terminations, open circuits, and short circuits in both sexes. Precision phase-matched adapters are included for accurate measurements of non-insertable devices. This kit is specified from DC to 3 GHz .

Replaceable parts for the Agilent 85036E

Item no.	Description	Oty per kit	Agilent replacement part number
	Calibration devices		
$\mathbf{1}$	75Ω Type-N male broadband load	1	$00909-60019$
$\mathbf{2}$	75Ω Type-N male combined open/short	1	$85036-60016$

Replaceable parts for the Agilent 85036B

Item no.	Description	Oty per kit	Agilent replacement part number
	Calibration devices		
$\mathbf{1}$	75Ω Type-N male broadband load	1	$00909-60019$
$\mathbf{2}$	75Ω Type-N female broadband load	1	$00909-60020$
$\mathbf{3}$	75Ω Type-N male short	1	$85036-60012$
$\mathbf{4}$	75Ω Type-N female short	1	$85036-60011$
$\mathbf{5}$	75Ω Type-N male open	1	$85032-60007$
$\mathbf{6}$	75Ω Type-N female open body	1	$85032-20001$
$\mathbf{7}$	75Ω Type-N female open center conductor extender	1	$85036-60019$
$\mathbf{I t e m}$ no.	Description	$\mathbf{0 t y}$ per kit	Agilent replacement part number
$\boldsymbol{8}$	Adapters	Type-N male to male	1
$\mathbf{9}$	Type-N female to female	1	$85036-60013$
$\mathbf{1 0}$	Type-N male to female	1	$85036-60014$

Network Analyzer Accessories and Cal Kits

Agilent 85032E economy calibration kit,

 Type-N, 50 ohmThe Agilent 85032E economy calibration kit contains a Type-N (m) fixed termination and a one piece Type-N (m) open/short circuit. The kit is specified from DC to 6 GHz .

Accessory kits

Agilent 11853A

Type-N accessory kit, 50 ohm

Part number	Oty	Description
$\mathbf{1 2 5 0 - 1 4 7 2}$	2	Type-N female to Type-N female adapter
$\mathbf{1 2 5 0 - 1 4 7 5}$	2	Type-N male to Type-N male adapter
$\mathbf{1 1 5 1 1 A}$	1	Type-N female short
$\mathbf{1 1 5 1 2 A}$	1	Type-N male short

Agilent 11854A
 BNC accessory kit, 50 ohm

Part number	Oty	Description
$\mathbf{1 2 5 0 - 0 9 2 9}$	1	BNC male short
$\mathbf{1 2 5 0 - 1 4 7 3}$	2	BNC male to Type-N male adapter
$\mathbf{1 2 5 0 - 1 4 7 4}$	2	BNC female to Type-N female adapter
$\mathbf{1 2 5 0 - 1 4 7 6}$	2	BNC female to Type-N male adapter
$\mathbf{1 2 5 0 - 1 4 7 7}$	2	BNC male to Type-N female adapter

Agilent 86211A

Type-F accessory kit, 75 ohm

Part number	Oty	Description
$\mathbf{1 2 5 0 - 2 3 5 0}$	2	Type-F female to Type-F female
$\mathbf{1 2 5 0 - 2 3 6 8}$	1	75 ohm Type-N female to Type-F male
$\mathbf{1 2 5 0 - 2 3 6 9}$	1	75 ohm Type-N male to Type-F male

Network Analyzer Accessories and Cal Kits

Electrical specifications

The electrical specifications below apply to the devices in the Agilent 85032E 50 ohm, Type-N calibration kit.

Electrical specifications for 50Ω Type-N devices

Device	Frequency (GHz)	Parameter	Specifications
Load	DC to ≤ 2	Return loss	Return loss
	>2 to ≤ 3	Return loss	$\geq 49 \mathrm{~dB}(\leq 0.00355 \rho)$
	>3 to ≤ 6	Deviation from nominal: phase	$\geq 46 \mathrm{~dB}(\leq 0.00501 \rho)$
Male open ${ }^{1}$	DC to ≤ 6	Deviation from nominal: phase	$\pm 40 \mathrm{~dB}(\leq 0.01000 \rho)$
Male short ${ }^{1}$	DC to ≤ 6		$\pm 0.501^{\circ} \pm 0.234^{\circ} / \mathrm{GHz}$

Replacement parts for Agilent 85032E

Item no.	Description	Oty per kit	Agilent replacement part number
	Calibration devices		
$\mathbf{1}$	50Ω Type-N male broadband load	1	$00909-60009$
$\mathbf{2}$	50Ω Type-N combination male open/short	1	$85032-60011$

${ }^{1}$ The specifications for the opens and shorts are given as allowed deviation from the nominal model as defined in the standard definitions.

Network Analyzer Accessories and Cal Kits

Agilent 85032F calibration kit, Type-N, 50 ohm

The Agilent 85032F calibration kit contains precision 50 ohm Type-N standards used to calibrate Agilent ENA, ENA-L, and PNA-L series for measurements of devices with 50 ohm Type-N connectors. Standards include fixed terminations, open circuits, and short circuits in both sexes. This kit is specified from DC to 9 GHz . Option 100 adds a Type-N female to female adapter, Option 200 adds a Type-N male to male adapter, and Option 300 adds a Type-N female to male adapter. Precision phase-matched 7 mm to 50 ohm Type-N adapters for accurate measurements of non-insertable devices is added with Option 500.

Electrical specifications

	Frequency (GHz)	Parameter	Specifications
Loads	$D C$ to ≤ 2	Return loss	Return loss
	>2 to ≤ 3	Return loss	$\geq 48 \mathrm{~dB}(\leq 0.00398 \rho)$
	>3 to ≤ 6	Return loss	$\geq 45 \mathrm{~dB}(\leq 0.00562 \rho)$
	>6 to ≤ 9	Deviation from nominal phase	$\pm 40 \mathrm{~dB}(\leq 0.010 \rho)$
Opens	DC to ≤ 3	Deviation from nominal phase	$\pm 38 \mathrm{~dB}(\leq 0.0126 \rho)$
	>3 to ≤ 9	Deviation from nominal phase	$\pm 05^{\circ}$
Shorts	DC to ≤ 3	Deviation from nominal phase	$\pm 1.00^{\circ}$
Adapters (Options 100, 200, 300)	DC to ≤ 9	Return loss	

Replacement parts for Agilent 85032F

Item no.	Description	Oty per kit	Agilent replacement part number
	Calibration devices		
1	50Ω Type-N male broadband load	1	85032-60017
2	50Ω Type-N female broadband load	1	85032-60018
3	50Ω Type-N male open	1	85032-60013
4	50Ω Type-N female open	1	85032-60014
5	50Ω Type-N male short	1	85032-60016
6	50Ω Type-N female short	1	85032-60015
Item no.	Description	Oty per kit	Agilent replacement part number
	Adapters		
7	50Ω Type-N (f) to Type-N (f) adapter (Option 100)	1	85032-60021
8	50Ω Type-N (m) to Type-N (m) adapter (Option 200)	1	85032-60019
9	50Ω Type-N (m) to Type-N (f) adapter (Option 300)	1	85032-60020
10	50Ω Type-N (f) to 7 mm adapter (Option 500)	2	85054-60001
11	50Ω Type-N (m) to 7 mm adapter (Option 500)	2	85054-60009

Network Analyzer Accessories and Cal Kits

Agilent 85054B calibration kit, Type-N, 50 ohm

The Agilent 85054B calibration kit contains precision standard devices to characterize the systematic errors of the Agilent PNA, and PNA-L series network analyzers with Type-N interface. This kit also contains adapters to change the sex of the test port, connector gages for verifying and maintaining in the connector interface, and a torque wrench for proper connection.

Electrical specifications

	Frequency (GHz)	Parameter	Specifications
Lowband loads	DC to ≤ 2	Return loss	Return loss
Sliding loads	>2 to ≤ 18	Return loss	$\geq 48 \mathrm{~dB}(\leq 0.00398 \rho)$
Adapters (both types)	DC to ≤ 8	Return loss	$\geq 42 \mathrm{~dB}(\leq 0.00794 \rho)$
Offset opens	>8 to ≤ 18	Deviation from nominal phase	$\geq 34 \mathrm{~dB}(\leq 0.00200 \rho)$
Offset shorts	at 18	Deviation from nominal phase	$\pm 28 \mathrm{~dB}(\leq 0.00398 \rho)$
	at 18		$\pm 1.5^{\circ}$

Replaceable parts

Description	Oty per kit	Agilent replacement part number
Type-N (m) sliding load	1	$85054-60035$
Type-N (f) sliding load	1	$85054-60036$
Type-N (m) lowband load	1	$00909-60011$
Type-N (f) lowband load	1	$00909-60012$
Type-N (m) offset short	1	$85054-60025$
Type-N (f) offset short	1	$85054-60026$
Type-N (m) offset open	1	$85054-60027$
Type-N (f) offset open	1	$85054-60028$
Type-N (m) to Type-N (m)	1	$85054-60038$
Type-N (f) to Type-N (f)	2	$85054-60037$
Type-N (f) to 7 mm	2	$85054-60031$
Type-N (m) to 7 mm	1	$85054-60032$
$\mathbf{3 / 4}$ in., $\mathbf{1 3 5} \mathbf{N - c m ~ (1 2 ~ i n - l b) ~ t o r q u e ~ w r e n c h ~}$	1	$8710-1766$
Spanner	1	$08513-20014$
Screw-on \mathbf{N} gage	1	$85054-80011$
Type-N gage set (includes items listed below)	1	$85054-60049$
Type-N gage (f)	1	$85054-60050$
Type-N gage master (f)	1	$85054-60052$
Type-N gage (m)	2	$85054-60051$
Type-N gage master (m)	$85054-60053$	
Centering beads	$85054-80028$	

Network Analyzer Accessories and Cal Kits

Agilent 85054D economy calibration kit,

 Type-N, 50 ohmThe Agilent 85054D Type-N economy calibration kit is used to calibrate network analyzer systems for measurements of components with Type-N connectors up to 18 GHz .

Electrical specifications

	Frequency (GHz)	Parameter	Specifications
Device	DC to ≤ 2	Return loss	Return loss
	>2 to ≤ 8	Return loss	$\geq 40 \mathrm{~dB}(\leq 0.01000 \rho)$
	>8 to ≤ 18	Return loss	$\geq 36 \mathrm{~dB}(\leq 0.01585 \rho)$
Adapters (both types)	DC to ≤ 8	Return loss	$\geq 42 \mathrm{~dB}(\leq 0.01995 \rho)$
Offset opens	>8 to ≤ 18	Deviation from nominal phase	$\geq 34 \mathrm{~dB}(\leq 0.00200 \rho)$
Offset shorts	at 18	Deviation from nominal phase	$\pm 28 \mathrm{~dB}(\leq 0.00398 \rho)$
	at 18		$\pm 1.5^{\circ}$

Replaceable parts

Description	Oty per kit	Agilent replacement part number
Type-N broadband load (m)	1	$85054-60046$
Type-N broadband load (f)	1	$85054-60047$
Type-N offset short (m)	1	$85054-60025$
Type-N offset short (f)	1	$85054-60026$
Type-N offset open (m)	1	$85054-60027$
Type-N offset open (f)	1	$85054-60028$
Type-N (m) to Type-N (m)	1	$85054-60038$
Type-N (f) to Type-N (f)	1	$85054-60037$
Type-N (f) to $\mathbf{7 ~ m m ~}$	2	$85054-60031$
Type-N (m) to $\mathbf{7 m m}$	2	$85054-60032$
$\mathbf{3} \mathbf{4} \mathbf{~ i n . , ~ 1 3 5 ~} \mathbf{N - c m ~ (1 2 ~} \mathbf{~ i n - l b) ~ t o r q u e ~ w r e n c h ~}$	1	$8710-1766$
Spanner	1	$08513-20014$

Network Analyzer Accessories and Cal Kits

Agilent 85038A 7-16 calibration kit

The Agilent 85038A 7-16 calibration kit contains fixed loads and open and short circuits in both sexes. It can be used to calibrate the Agilent ENA, ENA-L, and PNA-L series network analyzers for measurement of components with 50 ohm 7-16 connectors up to 7.5 GHz .

The Agilent 85038 M and Agilent 85038 F are single sex calibration kits and contain male only and female only standards respectively.

Electrical specifications

Frequency range	DC to 7.5 GHz
Reference impedance	50 ohms
Short circuits Reflection coefficient	0.99 minimum
Open circuits Reflection coefficient Reflection phase	0.99 minimum
Fixed termination VSWR	1.02 maximum

Parts list

Agilent 85038A 7-16 calibration kit

Part number	Description	85038A	85038M	85038F
$\mathbf{8 5 0 3 8 - 8 0 0 0 2}$	Open female	X		X
$\mathbf{8 5 0 3 8 - 8 0 0 0 3}$	Open male	X	X	
$\mathbf{8 5 0 3 8 - 8 0 0 0 4}$	Short female	X		X
$\mathbf{8 5 0 3 8 - 8 0 0 0 5}$	Short male	X	X	
$\mathbf{8 5 0 3 8 - 8 0 0 0 6}$	Load female	X		X
$\mathbf{8 5 0 3 8 - 8 0 0 0 7}$	Load male	X	X	
$\mathbf{1 1 9 0 6 - 8 0 0 1 5}$	Male to male adapter		X	
$\mathbf{1 1 9 0 6 - 8 0 0 1 6}$	Female to female adapter			X

Agilent also offers the following adapter kits:

Agilent 11906A 7-16 to 7-16

Part number	Oty	Description
$\mathbf{1 1 9 0 6 - 8 0 0 1 5}$	1	$7-16$ male to $7-16$ male
$\mathbf{1 1 9 0 6 - 8 0 0 1 6}$	1	$7-16$ female to $7-16$ female
$\mathbf{1 1 9 0 6 - 8 0 0 1 7}$	2	$7-16$ female to $7-16$ male

Agilent 11906B 7-16 to Type-N 50 ohm

Part number	Oty	Description
$\mathbf{1 1 9 0 6 - 8 0 0 0 7}$	1	Type-N male to 7-16 male
$\mathbf{1 1 9 0 6 - 8 0 0 0 8}$	1	Type-N female to 7-16 female
$\mathbf{1 1 9 0 6 - 8 0 0 0 9}$	1	Type-N female to 7-16 male
$\mathbf{1 1 9 0 6 - 8 0 0 1 0}$	1	Type-N male to $7-16$ female

Agilent 11906C 7-16 to 7 mm

Part number	Oty	Description
$\mathbf{1 1 9 0 6 - 8 0 0 1 2}$	2	7 mm to $7-16$ male
$\mathbf{1 1 9 0 6 - 8 0 0 1 3}$	2	7 mm to $7-16$ female

Agilent 11906D 7-16 to 3.5 mm

Part number	Qty	Description
$\mathbf{1 1 9 0 6 - 8 0 0 0 2}$	1	3.5 mm male to $7-16$ male
$\mathbf{1 1 9 0 6 - 8 0 0 0 3}$	1	3.5 mm female to $7-16$ female
$\mathbf{1 1 9 0 6 - 8 0 0 0 4}$	1	3.5 mm female to $7-16$ male
$\mathbf{1 1 9 0 6 - 8 0 0 0 5}$	1	3.5 mm male to $7-16$ female

Network Analyzer Accessories and Cal Kits

Agilent 85031B calibration kit, 7 mm

Electrical specifications

Specifications		
$\mathbf{5 0}$ ohm loads	DC to 5 GHz	Return loss $\geq 52 \mathrm{~dB}$
	5 to 6 GHz	Return loss $\geq 46 \mathrm{~dB}$
	6 to 18 GHz	Return loss (typical) $\geq 26.4 \mathrm{~dB}$

Replaceable parts

Part number	Qty	Description
$\mathbf{8 5 0 3 1 - 6 0 0 0 1}$	1	7 mm 50 ohm combination open/short
$\mathbf{0 0 9 0 9 - 6 0 0 0 8}$	2	7 mm 50 ohm terminations

The Agilent 85031B calibration kit contains a set of precision 7 mm fixed terminations, and a one-piece open/short circuit used to calibrate the ENA, and PNA-L series for measurement of devices with precision 7 mm connectors. This kit is specified from DC to 6 GHz .

Agilent 85050D, 7 mm economy calibration kit

The Agilent 85050D economy calibration kit contains precision standard devices to characterize the systematic errors of the Agilent PNA, and PNA-L series network analyzers in the 7 mm interface. This kit also contains adapters to change the sex of the test port and a torque wrench for proper connection. Connector gages may be ordered separately.

Electrical specifications

	Specifications	Frequency (GHz)
Broadband loads	$\geq 38 \mathrm{~dB}$ return loss	DC to 18
Short (collet style)	$\pm 0.2^{\circ}$ from nominal	DC to 2
	$\pm 0.3^{\circ}$ from nominal	2 to 8
	$\pm 0.5^{\circ}$ from nominal	8 to 18
Open (with collet pusher)	$\pm 0.3^{\circ}$ from nominal	DC to 2
	$\pm 0.4^{\circ}$ from nominal	2 to 18
	$\pm 0.6^{\circ}$ from nominal	8 to 18

Replaceable parts

Description	Oty per kit	Agilent replacement part number
$\mathbf{7} \mathbf{~ m m}$ broadband load	1	$85050-60006$
$\mathbf{7 ~ m m}$ short	1	$85050-80007$
$\mathbf{7 ~ m m}$ open	1	$85050-80010$

Network Analyzer Accessories and Cal Kits

Agilent 85050B calibration kit, 7 mm

The Agilent 85050B calibration kit contains precision standard devices to characterize the systematic errors of the Agilent PNA, and PNA-L series network analyzers in the 7 mm interface. This kit also contains adapters to change the sex of the test port, connector gages for verifying and maintaining the connector interface, and a torque wrench for proper connection.

Electrical specifications

Sevice		Frecifications
Lowband loads	$\geq 52 \mathrm{~dB}$ return loss	DC to 2
Broadband loads	$\geq 38 \mathrm{~dB}$ return loss	DC to 18
Short (collet style)	$\pm 0.2^{\circ}$ from nominal	DC to 2
	$\pm 0.3^{\circ}$ from nominal	2 to 8
	$\pm 0.5^{\circ}$ from nominal	8 to 18
Open (with collet pusher)	$\pm 0.3^{\circ}$ from nominal	DC to 2
	$\pm 0.4^{\circ}$ from nominal	2 to 8
	$\pm 0.6^{\circ}$ from nominal	8 to 18

Replaceable parts

Description	Oty per kit	Agilent replacement part number
7 mm lowband load	1	00909-60008
7 mm sliding load	1	85050-60014
7 mm broadband load	1	85050-60006
7 mm short	1	85050-80007
7 mm open	1	85050-80010
7 mm center conductor collets	4	85050-20001
7 mm connector collet extractor tool	1	5060-0370
3/4 in., 135 N -cm (12 in-lb) torque wrench	1	8710-1766

Network Analyzer Accessories and Cal Kits

Agilent 85050C, 7 mm precision calibration kit

The Agilent 85050C precision calibration kit contains precision standard devices to characterize the systematic errors of the Agilent PNA, and PNA-L series network analyzers in the 7 mm interface. This kit also contains adapters to change the sex of the test port, connector gages for verifying and maintaining the connector interface, and a torque wrench for proper connection.

Electrical specifications

Sevice		$\geq 52 \mathrm{~dB}$ return loss
Lowband loads	$\geq 38 \mathrm{~dB}$ return loss	DC to 2
Broadband loads	$\pm 0.2^{\circ}$ from nominal	DC to 18
Short (collet style)	$\pm 0.3^{\circ}$ from nominal	DC to 2
	$\pm 0.5^{\circ}$ from nominal	2 to 8
	$\pm 0.3^{\circ}$ from nominal	8 to 18
Open (with collet pusher)	$\pm 0.4^{\circ}$ from nominal	DC to 2
	$\pm 0.6^{\circ}$ from nominal	2 to 8
	$>60 \mathrm{~dB}$ return loss	8 to 18
Precision airline		2 to 18

Replaceable parts

Description	Oty per kit	Agilent replacement part number
7 mm broadband load	1	85050-60006
7 mm lowband load	1	00909-60008
7 mm short (collet style)	1	85050-80009
7 mm short (threaded center conductor style)	1	85050-80008
TRL adapter	1	85050-60005
7 mm open	1	85050-80010
7 mm precision airline	1	85050-60003
$3 / 4$ in., $135 \mathrm{~N}-\mathrm{cm}$ ($12 \mathrm{in}-\mathrm{lb}$) torque wrench	1	8710-1766
7 mm connector collet extractor tool	1	5060-0370

Network Analyzer Accessories and Cal Kits

Coaxial Mechanical Calibration Kits (continued)

Agilent 85033 E calibration kit, 3.5 mm

The Agilent $85033 E$ calibration kit contains precision 3.5 mm standards used to calibrate Agilent ENA, ENA-L, and PNA-L series for measurements of devices 3.5 mm connectors. Standards include fixed terminations, open circuits, and short circuits in both sexes. This kit is specified from DC to 9 GHz . Option 100 adds a 3.5 mm female to female adapter, Option 200 adds a 3.5 mm male to male adapter, and Option 300 adds a 3.5 mm female to male adapter. Precision phase-matched Type-N to 3.5 mm adapters for accurate measurements of non-insertable devices is added with Option 400 while Option 500 provides phase-matched 7 mm to 3.5 mm adapters.

Electrical specifications

Device		Frequency (GHz)	Parameter
Loads	$D C$ to ≤ 2	Return loss	Specifications
	>2 to ≤ 3	Return loss	$\geq 46 \mathrm{~dB}(\leq 0.005 \rho)$
	>3 to ≤ 9	Return loss	$\geq 44 \mathrm{~dB}(\leq 0.006 \rho)$
Opens	DC to ≤ 2	Deviation from nominal phase	$\geq 38 \mathrm{~dB}(\leq 0.013 \rho)$
	>2 to ≤ 3	Deviation from nominal phase	$\pm 0.55^{\circ}$
	>3 to ≤ 6	Deviation from nominal phase	$\pm 0.65^{\circ}$
	>6 to ≤ 9	Deviation from nominal phase	$\pm 0.85^{\circ}$
Shorts	$D C$ to ≤ 2	Deviation from nominal phase	$\pm 1.00^{\circ}$
	>2 to ≤ 3	Deviation from nominal phase	$\pm 0.48^{\circ}$
	>3 to ≤ 6	Deviation from nominal phase	$\pm 0.50^{\circ}$
	>6 to ≤ 9	Deviation from nominal phase	$\pm 0.55^{\circ}$
			$\pm 0.65^{\circ}$

Replaceable parts for Agilent 85033E

Item no.	Description	Oty per kit	Agilent replacement part number
$\mathbf{1}$	3.5 mm male broadband load	1	$85033-60016$
$\mathbf{2}$	3.5 mm female broadband load	1	$85033-60017$
$\mathbf{3}$	3.5 mm male open	1	$85033-60018$
$\mathbf{4}$	3.5 mm female open	1	$85033-60019$
$\mathbf{5}$	3.5 mm male short	1	$85033-60020$
$\mathbf{6}$	3.5 mm female short	1	$85033-60021$

Item no.	Description	Oty per kit	Agilent replacement part number
	Adapters		
$\mathbf{7}$	$3.5 \mathrm{~mm}(\mathrm{f})$ to (f) adapter (Option 100)	1	$85027-60005$
$\mathbf{8}$	$3.5 \mathrm{~mm}(\mathrm{~m})$ to (m) adapter (Option 200)	1	$85027-60007$
$\mathbf{9}$	$3.5 \mathrm{~mm}(\mathrm{~m})$ to (f) adapter (Option 300)	1	$85027-60006$
$\mathbf{1 0}$	$3.5 \mathrm{~mm}(\mathrm{f})$ to Type-N (f) adapter (Option 400)	1	$1250-1745$
$\mathbf{1 1}$	$3.5 \mathrm{~mm}(\mathrm{f})$ to Type-N (m) adapter (Option 400)	1	$1250-1744$
$\mathbf{1 2}$	$3.5 \mathrm{~mm}(\mathrm{~m})$ to Type-N (f) adapter (Option 400)	1	$1250-1750$
$\mathbf{1 3}$	$3.5 \mathrm{~mm}(\mathrm{~m})$ to Type-N (m) adapter (Option 400)	1	$1250-1743$
$\mathbf{1 4}$	$3.5 \mathrm{~mm}(\mathrm{f})$ to 7 mm adapter (Option 500)	1	$1250-1747$
$\mathbf{1 5}$	$3.5 \mathrm{~mm}(\mathrm{~m})$ to 7 mm adapter (Option 500)	1	$1250-1746$

Network Analyzer Accessories and Cal Kits

Agilent 85052D economy calibration kit, 3.5 mm

The Agilent 85052D economy calibration kit contains precision standard devices to characterize the systematic errors of the Agilent PNA, and PNA-L series network analyzers in the 3.5 mm interface. This kit also contains adapters to change the sex of the test port and a torque wrench for proper connection. Connector gages may be ordered separately.

Electrical specifications

Sevecifications		Frequency (GHz)
Broadband loads	$\geq 46 \mathrm{~dB}$ return loss $(\leq 0.00501 \rho)$	DC to ≤ 2
	$\geq 44 \mathrm{~dB}$ return loss $(\leq 0.00631 \rho)$	>2 to ≤ 3
	$\geq 38 \mathrm{~dB}$ return loss $(\leq 0.01259 \rho)$	>3 to ≤ 8
	$\geq 36 \mathrm{~dB}$ return loss $(\leq 0.01585 \rho)$	>8 to ≤ 20
	$\geq 34 \mathrm{~dB}$ return loss $(\leq 0.01995 \rho)$	>20 to ≤ 26.5
Adapters	$\geq 30 \mathrm{~dB}$ return loss $(\leq 0.03162 \rho)$	DC to ≤ 8
	$\geq 28 \mathrm{~dB}$ return loss $(\leq 0.03981 \rho)$	>8 to ≤ 18
	$\geq 26 \mathrm{~dB}$ return loss $(\leq 0.05012 \rho)$	>18 to ≤ 26.5
Offset opens	$\pm 0.65^{\circ}$ from nominal	DC to ≤ 3
	$\pm 1.20^{\circ}$ from nominal	>3 to ≤ 8
	$\pm 2.00^{\circ}$ from nominal	>8 to ≤ 20
	$\pm 2.00^{\circ}$ from nominal	>20 to ≤ 26.5
Offset shorts	$\pm 0.50^{\circ}$ from nominal	$D C$ to ≤ 3
	$\pm 1.00^{\circ}$ from nominal	>3 to ≤ 8
	$\pm 1.75^{\circ}$ from nominal	>8 to ≤ 20
	$\pm 1.75^{\circ}$ from nominal	>20 to ≤ 26.5

Replaceable parts

Description	Oty per kit	Agilent replacement part number
3.5 mm broadband load (m)	1	00902-60003
3.5 mm broadband load (f)	1	00902-60004
3.5 mm offset short (m)	1	85052-60006
3.5 mm offset short (f)	1	85052-60007
3.5 mm offset open (m)	1	85052-60008
3.5 mm offset open (f)	1	85052-60009
$3.5 \mathrm{~mm}(\mathrm{~m})$ to $3.5 \mathrm{~mm}(\mathrm{~m})$ adapter	1	85052-60014
3.5 mm (m) to 3.5 mm (f) adapter	1	85052-60013
3.5 mm (f) to 3.5 mm (f) adapter	1	85052-60012
5/16 in., $90 \mathrm{~N}-\mathrm{cm}$ (8 in-lb) torque wrench	1	8710-1765
7 mm open-end wrench	1	8710-1761

Network Analyzer Accessories and Cal Kits

Coaxial Mechanical Calibration Kits (continued)

Agilent 85052B calibration kit, 3.5 mm

The Agilent 85052B calibration kit contains precision standard devices to characterize the systematic errors of the Agilent PNA, and PNA-L series network analyzers in the 3.5 mm interface. This kit also contains adapters to change the sex of the test port, connector gages for verifying and maintaining the connector interface, and a torque wrench for proper connection.

Electrical specifications

Sevecifications		Frequency (GHz)
Broadband loads	$\geq 46 \mathrm{~dB}$ return loss $(\leq 0.00501 \rho)$	DC to ≤ 2
	$\geq 44 \mathrm{~dB}$ return loss $(\leq 0.00631 \rho)$	>2 to ≤ 3
	$\geq 38 \mathrm{~dB}$ return loss $(\leq 0.01259 \rho)$	>3 to ≤ 8
	$\geq 36 \mathrm{~dB}$ return loss $(\leq 0.01585 \rho)$	>8 to ≤ 20
	$\geq 34 \mathrm{~dB}$ return loss $(\leq 0.01995 \rho)$	>20 to ≤ 26.5
Sliding loads	$\geq 44 \mathrm{~dB}$ return loss $(\leq 0.00631 \rho)$	3 to ≤ 26.5
Adapters	$\geq 30 \mathrm{~dB}$ return loss $(\leq 0.03162 \rho)$	DC to ≤ 8
	$\geq 28 \mathrm{~dB}$ return loss $(\leq 0.03981 \rho)$	>8 to ≤ 18
	$\geq 26 \mathrm{~dB}$ return loss $(\leq 0.05012 \rho)$	>18 to ≤ 26.5
Offset opens	$\pm 0.65^{\circ}$ from nominal	DC to ≤ 3
	$\pm 1.20^{\circ}$ from nominal	3 to ≤ 8
	$\pm 2.00^{\circ}$ from nominal	>8 to ≤ 20
	$\pm 2.00^{\circ}$ from nominal	20 to ≤ 26.5
Offset shorts	$\pm 0.50^{\circ}$ from nominal	$D C$ to ≤ 3
	$\pm 1.00^{\circ}$ from nominal	>3 to ≤ 8
	$\pm 1.75^{\circ}$ from nominal	>8 to ≤ 20
	$\pm 1.75^{\circ}$ from nominal	>20 to ≤ 26.5

Replaceable parts

Description	Oty per kit	Agilent replacement part number
3.5 mm sliding load (m)	1	00911-60019
3.5 mm sliding load (f)	1	00911-60020
3.5 mm broadband load (m)	1	00902-60003
3.5 mm broadband load (f)	1	00902-60004
3.5 mm offset short (m)	1	85052-60006
3.5 mm offset short (f)	1	85052-60007
3.5 mm offset open (m)	1	85052-60008
3.5 mm offset open (f)	1	85052-60009
$3.5 \mathrm{~mm}(\mathrm{~m})$ to $3.5 \mathrm{~mm}(\mathrm{~m})$ adapter	1	85052-60014
3.5 mm (m) to 3.5 mm (f) adapter	1	85052-60013
3.5 mm (f) to 3.5 mm (f) adapter	1	85052-60012
$5 / 16$ in., $90 \mathrm{~N}-\mathrm{cm}$ (8 in-lb) torque wrench	1	8710-1765
7 mm open-end wrench	1	8710-1761

Network Analyzer Accessories and Cal Kits

Agilent 85052C calibration kit, 3.5 mm

The Agilent 85052 C is a laboratory-grade 3.5 mm calibration kit. Its purpose is to provide high-quality calibrations up to 26.5 GHz for microwave network analyzers such as the Agilent PNA, and PNA-L series using the TRL (thru-reflect-line) calibration method. The calibration devices in this kit have very precise mechanical dimensions and must be handled with care.

Electrical specifications

Device	Specifications	Frequency (GHz)
Broadband loads	$\geq 46 \mathrm{~dB}$ return loss $(\leq 0.00501 \rho)$	DC to ≤ 2
	$\geq 44 \mathrm{~dB}$ return loss $(\leq 0.00631 \rho)$	>2 to ≤ 3
	$\geq 38 \mathrm{~dB}$ return loss $(\leq 0.01259 \rho)$	>3 to ≤ 8
	$\geq 36 \mathrm{~dB}$ return loss $(\leq 0.01585 \rho)$	>8 to ≤ 20
	$\geq 34 \mathrm{~dB}$ return loss $(\leq 0.01995 \rho)$	>20 to ≤ 26.5
Long precision airline	$\geq 56 \mathrm{~dB}$ return loss $(\leq 0.00158 \rho)$	>2 to ≤ 7
Short precision airline	$\geq 50 \mathrm{~dB}$ return loss $(\leq 0.00316 \rho)$	>7 to ≤ 26.5
Precision adapters	$\geq 30 \mathrm{~dB}$ return loss $(\leq 0.03162 \rho)$	DC to ≤ 20
	$\geq 27 \mathrm{~dB}$ return loss $(\leq 0.00447 \rho)$	>20 to ≤ 26.5
Offset opens	$\pm 0.65^{\circ}$ from nominal	DC to ≤ 3
	$\pm 1.20^{\circ}$ from nominal	>3 to ≤ 8
	$\pm 2.00^{\circ}$ from nominal	>8 to ≤ 20
	$\pm 2.00^{\circ}$ from nominal	>20 to ≤ 26.5
0ffset shorts	$\pm 0.50^{\circ}$ from nominal	DC to ≤ 3
	$\pm 1.00^{\circ}$ from nominal	>3 to ≤ 8
	$\pm 1.75^{\circ}$ from nominal	>8 to ≤ 20
	$\pm 1.75^{\circ}$ from nominal	>20 to ≤ 26.5

Replaceable parts

Description	Oty per kit	Agilent replacement part number
3.5 mm broadband load (m)	1	00902-60003
3.5 mm broadband load (f)	1	00902-60004
3.5 mm offset short (m)	1	85052-60006
3.5 mm offset short (f)	1	85052-60007
3.5 mm offset open (m)	1	85052-60008
3.5 mm offset open (f)	1	85052-60009
$3.5 \mathrm{~mm}(\mathrm{~m})$ to $3.5 \mathrm{~mm}(\mathrm{~m})$ adapter	1	85052-60033
3.5 mm (f) to 3.5 mm (f) adapter	1	85052-60032
3.5 mm (m) to 3.5 mm (f) adapter	1	85052-60034
Long precision airline, 2-7 GHz (includes insertion tool)	1	85052-60036
Short precision airline, 7-32 GHz (includes insertion tool)	1	85052-60035
Spanner	1	08513-20014
5/16 in., $90 \mathrm{~N}-\mathrm{cm}$ (8 in-lb) torque wrench	1	8710-1765
Hex balldriver, 4mm	1	8710-1933
Adapter anti-rotation clamp	2	85052-20060

Network Analyzer Accessories and Cal Kits

Agilent 85056 K calibration kit, 2.4 mm \& 2.92 mm

The Agilent 85056K calibration kit was designed to give network analyzer systems with 2.4 mm test ports, such as the Agilent PNA, and PNA-L series, the ability to perform measurements on devices with 2.92 mm connectors. The kit can be used to achieve calibrated measurements of 2.92 mm devices up to 40 GHz , and 2.4 mm devices up to 50 GHz .

Electrical specifications

Device	Frequency (GHz)	Parameter	Specifications
Broadband loads	DC to ≤ 4	Return loss	$\geq 42 \mathrm{~dB}$ ($\leq 0.00794 \rho$)
	>4 to ≤ 20	Return loss	$\geq 34 \mathrm{~dB}(\leq 0.01995 \rho)$
	>20 to ≤ 26.5	Return loss	$\geq 30 \mathrm{~dB}(\leq 0.03163 \rho$)
	>26.5 to ≤ 50	Return loss	$\geq 30 \mathrm{~dB}(\leq 0.05019 \rho)$
Sliding loads	4 to ≤ 20	Return loss	$\geq 42 \mathrm{~dB}(\leq 0.00794 \rho)$
	>20 to ≤ 36	Return loss	$\geq 40 \mathrm{~dB}(\leq 0.01000 \rho$)
	>36 to ≤ 40	Return loss	$\geq 38 \mathrm{~dB}(\leq 0.01259 \rho$)
	>40 to ≤ 50	Return loss	$\geq 36 \mathrm{~dB}(\leq 0.01585 \rho)$
Adapters (2.4 mm to 2.4 mm)	DC to ≤ 4	Return loss	$\geq 32 \mathrm{~dB}(\leq 0.02512 \rho)$
	>4 to ≤ 26.5	Return loss	$\geq 30 \mathrm{~dB}(\leq 0.03162 \rho$)
	>26.5 to ≤ 40	Return loss	$\geq 25 \mathrm{~dB}(\leq 0.05623 \rho)$
	>40 to ≤ 50	Return loss	$\geq 20 \mathrm{~dB}(\leq 0.01000 \rho$)
Adapters (2.4 mm to 2.92 mm)	DC to ≤ 40	Return loss	$\geq 24 \mathrm{~dB}(\leq 0.06310 \rho)$
Offset opens	DC to ≤ 2	Deviation from nominal phase	$\pm 0.5^{\circ}$
	>2 to ≤ 20	Deviation from nominal phase	$\pm 1.25^{\circ}$
	>20 to ≤ 40	Deviation from nominal phase	$\pm 1.75^{\circ}$
	>40 to ≤ 50	Deviation from nominal phase	$\pm 2.25{ }^{\circ}$
Offset shorts	DC to ≤ 2	Deviation from nominal phase	$\pm 0.5{ }^{\circ}$
	>2 to ≤ 20	Deviation from nominal phase	$\pm 1.25^{\circ}$
	>20 to ≤ 40	Deviation from nominal phase	$\pm 1.5^{\circ}$
	>40 to ≤ 50	Deviation from nominal phase	$\pm 2.0^{\circ}$

2.4 mm to 2.92 mm adapter characteristics

Frequency (GHz)	Parameter	Typical Value
DC to ≤ 2	Return loss	$\geq 38 \mathrm{~dB}(\leq 0.01259 \rho)$
>2 to ≤ 20	Return loss	$\geq 35 \mathrm{~dB}(\leq 0.01778 \rho)$
>20 to ≤ 40	Return loss	$\geq 30 \mathrm{~dB}(\leq 0.03162 \rho)$
DC to ≤ 40	Electrical length	$39.631 \mathrm{ps} \pm 0.14 \mathrm{ps}$
DC to ≤ 40	Insertion loss	$<0.075 \mathrm{~dB}$

Network Analyzer Accessories and Cal Kits

Replaceable parts

Description	Oty per kit	Agilent replacement part number
2.4 mm broadband load (m)	1	00901-60003
2.4 mm broadband load (f)	1	00901-60004
2.4 mm offset short (m)	1	85056-60020
2.4 mm offset short (f)	1	85056-60021
2.4 mm offset open (m)	1	85056-60022
2.4 mm offset open (f)	1	85056-60023
$2.4 \mathrm{~mm}(\mathrm{~m})$ to 2.4 mm (m) adapter	1	85056-60005
2.4 mm (f) to 2.4 mm (f) adapter	1	85056-60006
2.4 mm (f) to 2.4 mm (m) adapter	1	85056-60007
$2.4 \mathrm{~mm}(\mathrm{~m})$ to 2.92 mm (m) adapter	1	11904-60001
2.4 mm (m) to 2.92 mm (f) adapter	1	11904-60003
2.4 mm (f) to 2.92 mm (m) adapter	1	11904-60004
$2.4 \mathbf{~ m m ~ (f) ~ t o ~} 2.92 \mathrm{~mm}$ (f) adapter	1	11904-60002
$5 / 16 \mathrm{in}$., $90 \mathrm{~N}-\mathrm{cm}$ (8 in-lb) torque wrench	1	8710-1765
$5 / 16 \mathrm{in}$., $56 \mathrm{~N}-\mathrm{cm}(5 \mathrm{in}-\mathrm{lb})$ torque wrench	1	8710-1582
7 mm open-end	1	8710-1761
2.4 mm sliding load (m)	1	00915-60003
2.4 mm sliding load (f)	1	00915-60004
2.4 mm (m/f) gage set	1	11752 E
Centering bead (for gaging 2.4 mm sliding load)	2	85056-20001
Tube package	1	15040-0803

Network Analyzer Accessories and Cal Kits

Agilent 85056D economy calibration kit, 2.4 mm

The Agilent 85056D economy calibration kit contains precision standard devices to characterize the systematic errors of the Agilent PNA, and PNA-L series network analyzers in the 2.4 mm interface. This kit also contains adapters to change the sex of the test port and a torque wrench for proper connection. Connector gages may be ordered separately.

Electrical specifications

Device	Frequency (GHz)	Parameter	Specifications
Broadband loads	$D C$ to ≤ 4	Return loss	$\geq 42 \mathrm{~dB}(\leq 0.00794 \rho)$
	>4 to ≤ 20	Return loss	$\geq 34 \mathrm{~dB}(\leq 0.01995 \rho)$
	>20 to ≤ 26.5	Return loss	$\geq 30 \mathrm{~dB}(\leq 0.03163 \rho)$
	>26.5 to ≤ 50	Return loss	$\geq 30 \mathrm{~dB}(\leq 0.05019 \rho)$
Adapters $(2.4 \mathrm{~mm}$ to 2.4 mm$)$	DC to ≤ 4	Return loss	$\geq 32 \mathrm{~dB}(\leq 0.02512 \rho)$
	>4 to ≤ 26.5	Return loss	$\geq 30 \mathrm{~dB}(\leq 0.03162 \rho)$
	>26.5 to ≤ 40	Return loss	$\geq 25 \mathrm{~dB}(\leq 0.05623 \rho)$
	>40 to ≤ 50	Return loss	$\geq 20 \mathrm{~dB}(\leq 0.01000 \rho)$
Offset opens	CC to ≤ 2	Deviation from nominal phase	$\pm 0.5^{\circ}$
	>2 to ≤ 20	Deviation from nominal phase	$\pm 1.25^{\circ}$
	>20 to ≤ 40	Deviation from nominal phase	$\pm 1.75^{\circ}$
	>40 to ≤ 50	Deviation from nominal phase	$\pm 2.25^{\circ}$
	$D C$ to ≤ 2	Deviation from nominal phase	$\pm 0.5^{\circ}$
	>2 to ≤ 20	Deviation from nominal phase	$\pm 1.25^{\circ}$
	>20 to ≤ 40	Deviation from nominal phase	$\pm 1.5^{\circ}$
	>40 to ≤ 50	Deviation from nominal phase	$\pm 2.0^{\circ}$

Replaceable parts

Description	Oty per kit	Agilent replacement part number
2.4 mm broadband load (m)	1	00901-60003
2.4 mm broadband load (f)	1	00901-60004
2.4 mm offset short (m)	1	85056-60020
2.4 mm offset short (f)	1	85056-60021
2.4 mm offset open (m)	1	85056-60022
2.4 mm offset open (f)	1	85056-60023
2.4 mm (m) to $2.4 \mathrm{~mm}(\mathrm{~m})$ adapter	1	85056-60005
2.4 mm (f) to 2.4 mm (f) adapter	1	85056-60006
2.4 mm (m) to 2.4 mm (f) adapter	1	85056-60007
5/16 in., $90 \mathrm{~N}-\mathrm{cm}$ (8 in-lb) torque wrench	1	8710-1765
7 mm open-end wrench	1	8710-1761

Network Analyzer Accessories and Cal Kits

Agilent 85056A calibration kit, 2.4 mm

The Agilent 85056A 2.4 mm calibration kit is used to calibrate network analyzer systems (such as the Agilent PNA, and PNA-L series) for measurements of components with 2.4 mm connectors upto 50 GHz .

Device	Frequency (GHz)	Parameter	Specifications
Broadband loads	$D C$ to ≤ 4	Return loss	$\geq 42 \mathrm{~dB}(\leq 0.00794 \rho)$
	>4 to ≤ 20	Return loss	$\geq 34 \mathrm{~dB}(\leq 0.01995 \rho)$
	>20 to ≤ 26.5	Return loss	$\geq 30 \mathrm{~dB}(\leq 0.03163 \rho)$
	>26.5 to ≤ 50	Return loss	$\geq 30 \mathrm{~dB}(\leq 0.05019 \rho)$
Sliding loads	4 to ≤ 20	Return loss	$\geq 42 \mathrm{~dB}(\leq 0.00794 \rho)$
	>20 to ≤ 36	Return loss	$\geq 40 \mathrm{~dB}(\leq 0.01000 \rho)$
	>36 to ≤ 40	Return loss	$\geq 38 \mathrm{~dB}(\leq 0.01259 \rho)$
	>40 to ≤ 50	Return loss	$\geq 36 \mathrm{~dB}(\leq 0.01585 \rho)$
Adapters	$D C$ to ≤ 4	Return loss	$\geq 32 \mathrm{~dB}(\leq 0.02512 \rho)$
(2.4 mm to 2.4 mm$)$	>4 to ≤ 26.5	Return loss	$\geq 30 \mathrm{~dB}(\leq 0.03162 \rho)$
	>26.5 to ≤ 40	Return loss	$\geq 25 \mathrm{~dB}(\leq 0.05623 \rho)$
	>40 to ≤ 50	Return loss	$\geq 20 \mathrm{~dB}(\leq 0.01000 \rho)$
Offset opens	$D C$ to ≤ 2	Deviation from nominal phase	$\pm 0.5^{\circ}$
	>2 to ≤ 20	Deviation from nominal phase	$\pm 1.25^{\circ}$
	>20 to ≤ 40	Deviation from nominal phase	$\pm 1.75^{\circ}$
	>40 to ≤ 50	Deviation from nominal phase	$\pm 2.25^{\circ}$
Offset shorts	$D C$ to ≤ 2	Deviation from nominal phase	$\pm 0.5^{\circ}$
	>2 to ≤ 20	Deviation from nominal phase	$\pm 1.25^{\circ}$
	>20 to ≤ 40	Deviation from nominal phase	$\pm 1.5^{\circ}$
	>40 to ≤ 50	Deviation from nominal phase	$\pm 2.0^{\circ}$

Replaceable parts

Description	Oty per kit	Agilent replacement part number
2.4 mm sliding load (m)	1	00915-60003
2.4 mm sliding load (f)	1	00915-60004
2.4 mm broadband load (m)	1	00901-60003
2.4 mm broadband load (f)	1	00901-60004
2.4 mm offset short (m)	1	85056-60020
2.4 mm offset short (f)	1	85056-60021
2.4 mm offset open (m)	1	85056-60022
2.4 mm offset open (f)	1	85056-60023
2.4 mm (m) to $2.4 \mathrm{~mm}(\mathrm{~m})$ adapter	1	85056-60005
2.4 mm (f) to 2.4 mm (f) adapter	1	85056-60006
2.4 mm (m) to 2.4 mm (f) adapter	1	85056-60007
5/16 in., 90 N-cm (8 in-lb) torque wrench	1	8710-1765
7 mm open-end wrench	1	8710-1761

Network Analyzer Accessories and Cal Kits

Agilent 85058E economy calibration kit, 1.85 mm

The Agilent 85058E economy calibration kit contains six standard devices to characterize the systematic errors of Agilent network analyzers up to 67 GHz for measurements of components with 1.85 mm connectors. The standards allow one to perform simple 1- or 2-port and thru-reflect-match (TRM) calibrations. This kit also
contains adapters and a torque wrench for proper connection. Each calibration kit includes two models for defining calibration standards; the data-based model (85058E), and the polynomial model (85058EP). The data-based model provides a higher accuracy method for describing calibration standards than the polynomial model.

Electrical specifications

Device	Frequency (GHz)	Parameter	Specifications			
			Male		Female	
			Polynomial model	Data-based model	Polynomial model	Data-based model
Broadband termination	$\begin{aligned} & \text { DC to } 35 \\ & 35 \text { to } 67 \end{aligned}$	Return loss	$\begin{aligned} & 30 \mathrm{~dB} \\ & 28 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 30 \mathrm{~dB} \\ & 28 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 30 \mathrm{~dB} \\ & 28 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 30 \mathrm{~dB} \\ & 28 \mathrm{~dB} \end{aligned}$
Open	$\begin{aligned} & \text { DC to } 10 \\ & 10 \text { to } 50 \\ & 50 \text { to } 67 \end{aligned}$	Deviation from nominal phase	$\begin{aligned} & 2.5^{\circ} \\ & 4.0^{\circ} \\ & 5.5^{\circ} \end{aligned}$	$\begin{aligned} & 2.0^{\circ} \\ & 3.0^{\circ} \\ & 4.5^{\circ} \end{aligned}$	$\begin{aligned} & 3.0^{\circ} \\ & 4.5^{\circ} \\ & 6.0^{\circ} \end{aligned}$	$\begin{aligned} & 2.5^{\circ} \\ & 3.5^{\circ} \\ & 5.0^{\circ} \end{aligned}$
Short 1	DC to 20 20 to 30 30 to 40 40 to 50 50 to 67	Deviation from nominal phase	$\begin{aligned} & 2.0^{\circ} \\ & 3.0^{\circ} \\ & 3.0^{\circ} \\ & 3.0^{\circ} \\ & 4.0^{\circ} \end{aligned}$	$\begin{aligned} & 1.5^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 3.0^{\circ} \end{aligned}$	$\begin{aligned} & 2.0^{\circ} \\ & 3.0^{\circ} \\ & 3.5^{\circ} \\ & 4.5^{\circ} \\ & 5.0^{\circ} \end{aligned}$	$\begin{aligned} & 1.5^{\circ} \\ & 2.0^{\circ} \\ & 2.5^{\circ} \\ & 3.5^{\circ} \\ & 4.0^{\circ} \end{aligned}$

Device	Frequency (GHz)	Parameter	Specifications	
			Return loss	Insertion loss
Adapters	$\begin{aligned} & \text { DC to } 4 \\ & 4 \text { to } 26.5 \\ & 26.5 \text { to } 50 \\ & 50 \text { to } 67 \end{aligned}$		$\begin{aligned} & 33 \mathrm{~dB} \\ & 24 \mathrm{~dB} \\ & 22 \mathrm{~dB} \\ & 20 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 0.3 \mathrm{~dB} \\ & 0.5 \mathrm{~dB} \\ & 0.7 \mathrm{~dB} \\ & 0.9 \mathrm{~dB} \end{aligned}$

Replaceable parts

Description	Oty per kit	Agilent replacement part number
$\mathbf{5 . 4} \mathbf{~ m m}$ offset short (m)	1	$85058-60101$
$\mathbf{5 . 4} \mathbf{~ m m}$ offset short (f)	1	$85058-60105$
Offset open (m)	1	$85058-60109$
$\mathbf{0 f f s e t ~ o p e n ~ (f) ~}$	1	$85058-60110$
Broadband termination (m)	1	$85058-60123$
Broadband termination (f)	1	$85058-60124$
Adapter, male to male	1	$85058-60113$
Adapter, female to female	1	$85058-60114$
Adapter, male to female	1	$85058-60115$
$\mathbf{5 / 1 6}$ in., $\mathbf{9 0} \mathbf{N - c m ~ (8 ~ i n - l b) ~ t o r q u e ~ w r e n c h ~}$	1	$8710-1765$
$\mathbf{8 ~ m m}$ open-end wrench	1	$8710-2466$

Network Analyzer Accessories and Cal Kits

Agilent 85058B calibration kit, 1.85 mm

The Agilent 85058B calibration kit contains twelve standard devices to characterize the systematic errors of Agilent network analyzers up to 67 GHz for measurements of components with 1.85 mm connectors. The standards allow one to perform simple 1- or 2-port and thru-reflect-match (TRM) calibrations. This kit also contains
adapters and a torque wrench for proper connection. Each calibration kit includes two models for defining calibration standards; the data-based model (85058B), and the polynomial model (85058BP). The data-based model provides a higher accuracy method for describing calibration standards than the polynomial model.

Electrical specifications

Device	Frequency (GHz)	Parameter	Specifications			
			Male		Female	
			Polynomial model	Data-based model	Polynomial model	Data-based model
Lowband load	$\begin{aligned} & \text { DC to } 10 \\ & 10 \text { to } 20 \\ & 20 \text { to } 35 \\ & 35 \text { to } 60^{1} \\ & 60 \text { to } 671 \end{aligned}$	Return loss	$\begin{aligned} & 36 \mathrm{~dB} \\ & 34 \mathrm{~dB} \\ & 31 \mathrm{~dB} \\ & 22 \mathrm{~dB} \\ & 19 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 36 \mathrm{~dB} \\ & 34 \mathrm{~dB} \\ & 31 \mathrm{~dB} \\ & 22 \mathrm{~dB} \\ & 19 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 35 \mathrm{~dB} \\ & 34 \mathrm{~dB} \\ & 29 \mathrm{~dB} \\ & 12 \mathrm{~dB} \\ & 10 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 35 \mathrm{~dB} \\ & 34 \mathrm{~dB} \\ & 29 \mathrm{~dB} \\ & 12 \mathrm{~dB} \\ & 10 \mathrm{~dB} \end{aligned}$
Open	DC to 10 10 to 35 35 to 50 50 to 67	Deviation from nominal phase	$\begin{aligned} & 2.2^{\circ} \\ & 3.2^{\circ} \\ & N / A^{2} \\ & N / A^{2} \end{aligned}$	$\begin{aligned} & 2.0^{\circ} \\ & 3.0^{\circ} \\ & 3.0^{\circ} \\ & 4.5^{\circ} \end{aligned}$	$\begin{aligned} & 2.7^{\circ} \\ & 3.7^{\circ} \\ & \text { N/A }{ }^{2} \\ & \text { N/A }{ }^{2} \end{aligned}$	$\begin{aligned} & 2.5^{\circ} \\ & 3.5^{\circ} \\ & 3.5^{\circ} \\ & 5.0^{\circ} \end{aligned}$
Short 1	DC to 20 20 to 30 30 to 35 35 to 40 40 to 50 50 to 67	Deviation from nominal phase	$\begin{aligned} & 1.7^{\circ} \\ & 2.2^{\circ} \\ & 2.2^{\circ} \\ & \text { N/A }{ }^{2} \\ & \text { N/A }{ }^{2} \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & 1.5^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 3.0^{\circ} \end{aligned}$	$\begin{aligned} & 1.7^{\circ} \\ & 2.2^{\circ} \\ & 2.7^{\circ} \\ & \text { N/A }{ }^{2} \\ & \text { N/A }{ }^{2} \\ & \text { N/A } 2 \end{aligned}$	$\begin{aligned} & 1.5^{\circ} \\ & 2.0^{\circ} \\ & 2.5^{\circ} \\ & 2.5^{\circ} \\ & 3.5^{\circ} \\ & 4.0^{\circ} \end{aligned}$
Short 2	DC to 20 20 to 30 30 to 35 35 to 40 40 to 50 50 to 67	Deviation from nominal phase	N/A ${ }^{2}$ N/A ${ }^{2}$ N/A ${ }^{2}$ 2.4° 2.6° 3.6°	$\begin{aligned} & 1.5^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 3.0^{\circ} \end{aligned}$	N/A ${ }^{2}$ N/A ${ }^{2}$ N/A ${ }^{2}$ 2.9° 4.1° 4.6°	$\begin{aligned} & 1.5^{\circ} \\ & 2.0^{\circ} \\ & 2.5^{\circ} \\ & 2.5^{\circ} \\ & 3.5^{\circ} \\ & 4.0^{\circ} \end{aligned}$
Short 3	DC to 20 20 to 30 30 to 35 35 to 40 40 to 50 50 to 67	Deviation from nominal phase	N/A ${ }^{2}$ N/A ${ }^{2}$ N/A ${ }^{2}$ 2.4° 2.6° 4.4°	$\begin{aligned} & 1.5^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 3.0^{\circ} \end{aligned}$	N/A ${ }^{2}$ N/A ${ }^{2}$ N/A ${ }^{2}$ 2.9° 4.1° 5.4°	$\begin{aligned} & 1.5^{\circ} \\ & 2.0^{\circ} \\ & 2.5^{\circ} \\ & 2.5^{\circ} \\ & 3.5^{\circ} \\ & 4.0^{\circ} \end{aligned}$
Short 4	DC to 20 20 to 30 30 to 35 35 to 40 40 to 50 50 to 67	Deviation from nominal phase	N/A ${ }^{2}$ N/A ${ }^{2}$ N/A ${ }^{2}$ 2.7° 3.1° 4.2°	$\begin{aligned} & 1.5^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 2.0^{\circ} \\ & 3.0^{\circ} \end{aligned}$	N/A ${ }^{2}$ N/A ${ }^{2}$ N/A ${ }^{2}$ 2.9° 4.6° 5.2°	$\begin{aligned} & 1.5^{\circ} \\ & 2.0^{\circ} \\ & 2.5^{\circ} \\ & 2.5^{\circ} \\ & 3.5^{\circ} \\ & 4.0^{\circ} \end{aligned}$

[^18]
Network Analyzer Accessories and Cal Kits

Device	Frequency (GHz)	Parameter	Specifications	
			Return loss	Insertion loss
Adapters	$\begin{array}{\|l\|} \hline \text { DC to } 4 \\ 4 \text { to } 26.5 \\ 26.5 \text { to } 50 \\ 50 \text { to } 67 \\ \hline \end{array}$		$\begin{aligned} & 33 \mathrm{~dB} \\ & 24 \mathrm{~dB} \\ & 22 \mathrm{~dB} \\ & 20 \mathrm{~dB} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 0.3 \mathrm{~dB} \\ 0.5 \mathrm{~dB} \\ 0.7 \mathrm{~dB} \\ 0.9 \mathrm{~dB} \end{array}$

Replaceable parts

Description	Oty per kit	Agilent replacement part number
5.4 mm offset short 1 (m)	1	85058-60101
5.4 mm offset short 1 (f)	1	85058-60105
6.3 mm offset short 2 (m)	1	85058-60102
6.3 mm offset short 2 (f)	1	85058-60106
7.12 mm offset short 3 (m)	1	85058-60103
7.12 mm offset short 3 (f)	1	85058-60107
7.6 mm offset short 4 (m)	1	85058-60104
7.6 mm offset short 4 (f)	1	85058-60108
Offset open (m)	1	85058-60109
Offset open (f)	1	85058-60110
Lowband load (m)	1	85058-60111
Lowband load (f)	1	85058-60112
Adapter, male to male	1	85058-60113
Adapter, female to female	1	85058-60114
Adapter, male to female	1	85058-60115
5/16 in., $90 \mathrm{~N}-\mathrm{cm}$ (8 in-lb) torque wrench	1	8710-1765
8 mm open-end wrench	1	8710-2466

Network Analyzer Accessories and Cal Kits

Agilent 85059A precision calibration/ verification kit, 1.0 mm

The Agilent 85059A is a 1.0 mm calibration/verification kit designed for vector network analyzer systems operating over the frequency range of 10 MHz to 110 GHz . The opens, shorts and loads in this kit were optimized to provide accurate calibrations over the specified frequency range. For best results, the calibration techniques recommended are the open-short-load-thru (OSLT) calibration from 10 MHz to 50 GHz , and the offset-shorts calibration from 50 GHz to 110 GHz , all in one calibration sequence.

Electrical specifications for 1.0 mm 50 ohm devices

Device	Frequency (GHz)	Parameter	Specifications	
			Male	Female
Loads	$\begin{aligned} & \text { DC to } 2 \\ & 2 \text { to } 18 \\ & 18 \text { to } 40 \\ & 40 \text { to } 50 \end{aligned}$	Return loss	$\begin{aligned} & 30 \mathrm{~dB} \\ & 30 \mathrm{~dB} \\ & 26 \mathrm{~dB} \\ & 24 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 30 \mathrm{~dB} \\ & 30 \mathrm{~dB} \\ & 26 \mathrm{~dB} \\ & 24 \mathrm{~dB} \end{aligned}$
Opens	$\begin{aligned} & \text { DC to } 2 \\ & 2 \text { to } 18 \\ & 18 \text { to } 50 \end{aligned}$	Deviation from nominal phase	$\begin{aligned} & \pm 1.0^{\circ} \\ & \pm 1.5^{\circ} \\ & \pm 2.5^{\circ} \end{aligned}$	$\begin{aligned} & \pm 1.0^{\circ} \\ & \pm 3.0^{\circ} \\ & \pm 4.0^{\circ} \end{aligned}$
Short 3	$\begin{aligned} & \text { DC to } 2 \\ & 2 \text { to } 18 \\ & 18 \text { to } 50 \\ & 50 \text { to } 110 \end{aligned}$	Deviation from nominal phase	$\begin{aligned} & \pm 0.8^{\circ} \\ & \pm 1.2^{\circ} \\ & \pm 1.5^{\circ} \\ & \pm 3.0^{\circ} \end{aligned}$	$\begin{aligned} & \pm 1.0^{\circ} \\ & \pm 2.0^{\circ} \\ & \pm 2.5^{\circ} \\ & \pm 5.0^{\circ} \end{aligned}$
Short 1	50 to 110	Deviation from nominal phase	$\pm 2.5^{\circ}$	$\pm 4.0^{\circ}$
Short 2	75 to 110	Deviation from nominal phase	$\pm 2.5{ }^{\circ}$	$\pm 4.0^{\circ}$
Short 4	50 to 75	Deviation from nominal phase	$\pm 2^{\circ}$	$\pm 4.5{ }^{\circ}$

Device	Frequency (GHz)	Parameter	Specifications
Lossy delay line	DC to 110	Return loss	Return loss
Adapters	DC to 20		24 dB
	20 to 50		20 dB
	50 to 75		18 dB
	75 to 110	Return loss	14 dB
Verification match	DC to 20		24 dB
thru (adapter)	20 to 50		20 dB
	50 to 75		18 dB
	75 to 110	Return loss	14 dB
Verification mismatch	DC to 110		6 dB @ $\sim 22.6 \mathrm{GHz}$ intervals
thru (adapter)			

Network Analyzer Accessories and Cal Kits

Replaceable parts

Description	Oty per kit	Agilent replacement part number
Shorts		
Male short 3	1	85059-60003
Female short 3	1	85059-60007
Male short 4	1	85059-60004
Female short 4	1	85059-60008
Male short 2	1	85059-60002
Female short 2	1	85059-60006
Male short 1	1	85059-60001
Female short 1	1	85059-60005
Opens		
Male open	1	85059-60009
Female open	1	85059-60010
Loads		
Male load	1	85059-60019
Female load	1	85059-60020
Lossy delay line	2	85059-60021
Adapters		
Male to male adapter	1	11920-60001
Female to female adapter	1	11920-60002
Male to female adapter	1	11920-60003
Cables		
Female to female cable (8.8 cm)	1	11500-60001
Verification devices		
Mismatched thru adapter	1	85059-60016
Matched thru adapter	1	85059-60017
Wrenches		
6 mm 4 in -lb torque	1	8710-2079
6 mm open-end	1	8710-2156

Network Analyzer Accessories and Cal Kits

Agilent X11644A WR-90 mechanical calibration kit, 8.2 GHz to 12.4 GHz

The Agilent X11644A calibration kit contains the precision mechanical standards required to calibrate the systematic errors of the Agilent PNA, and PNA-L series network analyzers. This calibration kit has a precision 50 ohm airline for performing the thru-reflect-line (TRL) calibration. This kit also contains a flush short circuit, a precision shim, and a fixed termination.

Electrical specifications

Device	Specifications
Frequency range	8.2 to 12.4 GHz
Termination	$\geq 42 \mathrm{~dB}$ return loss

Adapter characteristics

SWR	<1.05
Insertion loss	0.08 dB
Center conductor	0.0076 to 0.038 mm
Pin recession tolerance	$(0.0003$ to 0.0015 in$)$
Equivalent flange type	UG-135/U

Replaceable parts

Description	Oty per kit	Agilent replacement part number
Termination	2	$00910-60003$
Short	1	$11644-20018$
$\mathbf{1 / 4}$ Wavelength shim	1	$11644-20021$
$\mathbf{7 ~ m m}$ coax-to-waveguide adapter (f)	2	X281C 0ption 006
Standard section	1	$00896-60008$
Alignment pin	6	$11644-20024$
Slip pin	6	$11644-20025$
$\mathbf{8 - 3 2}$ pozi dr screw (0.625 inches long)	6	$2510-0109$
$\mathbf{8 - 3 2}$ pozi dr screw (1.0 inches long)	6	$2510-0115$
\#8 lock washer	12	$2190-0009$
$\mathbf{8 - 3 2}$ Hex nut	12	$2580-0002$
$\mathbf{1 / 4}$ in. wrench	1	$8720-0014$

Network Analyzer Accessories and Cal Kits

Agilent P11644A WR-62
 mechanical calibration kit, 12.4 GHz to 18.0 GHz

The Agilent P11644A calibration kit contains the precision mechanical standards required to calibrate the systematic errors of the Agilent PNA, and PNA-L series network analyzers.
This calibration kit has a precision 50 ohm airline for performing the thru-reflect-line (TRL) calibration. This kit also contains a flush short circuit, a precision shim, and a fixed termination.

Electrical specifications

Device	Specifications
Frequency range	12.4 to 18 GHz
Termination	$\geq 42 \mathrm{~dB}$ return loss

Adapter characteristics

SWR	<1.06
Insertion loss	0.10 dB
Center conductor	0.0076 to 0.038 mm
Pin recession tolerance	$(0.0003$ to 0.0015 in$)$
Equivalent flange type	UG-419/U

Replaceable parts

Description	Qty per kit	Agilent replacement part number
Termination	2	$00910-60002$
Short	1	$11644-20017$
$\mathbf{1 / 4}$ Wavelength shim	1	$11644-20020$
$\mathbf{7}$ mm coax-to-waveguide adapter (f)	2	P281C Option 006
Standard section	1	$00896-60007$
Alignment pin	6	$11644-20023$
Slip pin	6	$11644-20025$
$\mathbf{6 - 3 2}$ pozi dr screw (0.562 inches long)	6	$2360-0229$
$\mathbf{6 - 3 2}$ pozi dr screw ($\mathbf{0 . 8 7 5}$ inches long)	6	$2360-0207$
\#8 lock washer	12	$2190-0007$
$\mathbf{6 - 3 2}$ Hex nut	12	$2420-0003$
$\mathbf{1 / 4}$ in. wrench	1	$8720-0014$

Network Analyzer Accessories and Cal Kits

Agilent K11644A WR-42
 mechanical calibration kit, 18 GHz to 26.5 GHz

The Agilent K11644A calibration kit contains the precision mechanical standards required to calibrate the systematic errors of the Agilent PNA, and PNA-L series network analyzers. This calibration kit has a precision 50 ohm airline for performing the thru-reflect-line (TRL) calibration. This kit also contains a flush short circuit, a precision shim, and a fixed termination.

Electrical specifications

Device	Specifications
Frequency range	18 to 26.5 GHz
Termination	$\geq 42 \mathrm{~dB}$ return loss

Adapter characteristics

SWR	<1.07
Insertion loss	0.12 dB
Center conductor	0.0076 to 0.038 mm
Pin recession tolerance	$(0.0003$ to 0.0015 in$)$
Equivalent flange type	UG-597/U

Replaceable parts

Description	Oty per kit	Agilent replacement part number
Termination	2	$00910-60001$
Short	1	$11644-20016$
$\mathbf{1 / 4}$ Wavelength shim	1	$11644-20019$
$\mathbf{3 . 5} \mathbf{~ m m}$ coax-to-waveguide adapter (m)	1	$00281-60001$
$\mathbf{3 . 5} \mathbf{~ m m}$ coax-to-waveguide adapter (f)	1	K281C 0ption 006
Standard section	1	$00896-60006$
Alignment pin	6	$11644-20022$
Slip pin	6	$11644-20027$
$\mathbf{4 - 4 0}$ pozi dr screw (0.750 inches long)	12	$2200-0151$
Lock washer M2.5	12	$2190-0643$
$\mathbf{4 - 4 0}$ Hex nut	12	$2260-0002$
$\mathbf{3 / 1 6}$ in. wrench	1	$8720-0013$

Network Analyzer Accessories and Cal Kits

Agilent R11644A WR-28
 mechanical calibration kit, 26.5 GHz to 40 GHz

The Agilent R11644A calibration kit contains the precision mechanical standards required to calibrate the systematic errors of the Agilent PNA, and PNA-L series network analyzers. This calibration kit has a precision 50 ohm airline for performing the thru-reflect-line (TRL) calibration. This kit also contains a flush short circuit, a precision shim, and a fixed termination.

Electrical specifications

Device	Specifications
Frequency range	26.5 to 40 GHz
Termination	$\geq 46 \mathrm{~dB}$ effective return loss

Replaceable parts

Description	Oty per kit	Agilent replacement part number
Standard section $\mathbf{(5} \mathbf{~ c m})$	2	$11644-60016$
Standard section $\mathbf{(1 0} \mathbf{~ c m})$	1	$11644-60001$
Waveguide load	1	$11644-60004$
Short	1	$11644-20005$
R-band shim	1	$11644-20003$
Alignment pin	6	$11644-20009$
Slip pin	6	$11644-20006$
$\mathbf{4 - 4 0}$ Hex nut ($\mathbf{0 . 0 9 4}$ inches thick)	12	$2260-0002$
$\mathbf{4 - 4 0}$ SKT HD screw (0.750 inches long)	12	$3030-0721$
Lock washer (0.115 inches)	12	$2190-0030$
$\mathbf{3}$ /16 in. wrench	1	$8720-0013$
Hex ball driver	1	$8710-0523$

Network Analyzer Accessories and Cal Kits

Agilent 011644A WR-22 mechanical calibration kit, 33 GHz to 50 GHz

The Agilent 011644A calibration kit contains the precision mechanical standards required to calibrate the systematic errors of the Agilent PNA, and PNA-L series network analyzers. This calibration kit has a precision 50 ohm airline for performing the thru-reflect-line (TRL) calibration. This kit also contains a flush short circuit, a precision shim, and a fixed termination.

Electrical specifications

Device	Specifications
Frequency range	33 to 50 GHz
Termination	$\geq 46 \mathrm{~dB}$ effective return loss

Replaceable parts

Description	Oty per kit	Agilent replacement part number
O-band standard section (5 cm)	2	11644-60017
O-band standard section (10 cm)	1	11644-60002
$\mathbf{0}$-band waveguide load	1	11644-60005
0-band shim	1	11644-20001
Short (0-band)	1	11644-20004
Slip pin (1.645 mm dia.)	6	11644-20008
Slip pin ($\mathbf{2 . 3 6 7 ~ m m ~ d i a .) ~}$	6	11644-20006
4-40 SKT HD screw (0.500 inches long)	12	3030-0203
4-40 captive screw (0.43 inches long)	12	1390-0764
4-40 captive screw (0.31 inches long)	24	1390-0671
Hex ball driver	1	8710-0523

Network Analyzer Accessories and Cal Kits

Agilent U11644A WR-19 mechanical calibration kit, 40 GHz to 60 GHz

The Agilent U11644A calibration kit contains the precision mechanical standards required to calibrate the systematic errors of the Agilent PNA series network analyzers. This calibration kit has a precision 50 ohm airline for performing the thru-reflect-line (TRL) calibration. This kit also contains a flush short circuit, a precision shim, and a fixed termination

Electrical specifications

Device	Specifications
Frequency range	40 to 60 GHz
Termination	$\geq 46 \mathrm{~dB}$ effective return loss

Replaceable parts

Description	Oty per kit	Agilent replacement part number
U-band standard section (5 cm)	2	11644-60018
U-band standard section (10 cm)	1	11644-60003
U-band waveguide load	1	11644-60006
U-band shim	1	11644-20002
Short (U-band)	1	11644-20004
Slip pin (1.645 mm dia.)	6	11644-20008
Slip pin ($\mathbf{2 . 3 6 7 ~ m m ~ d i a .) ~}$	6	11644-20006
4-40 SKT HD screw (0.500 inches long)	12	3030-0203
4-40 captive screw (0.43 inches long)	12	1390-0764
4-40 captive screw (0.31 inches long)	24	1390-0671
Hex ball driver	1	8710-0523

Network Analyzer Accessories and Cal Kits

Agilent V11644A WR-15 mechanical calibration kit, 50 GHz to 75 GHz

The Agilent V11644A calibration kit contains the precision mechanical standards required to calibrate the systematic errors of the Agilent PNA series network analyzers. This calibration kit has a precision 50 ohm airline for performing the thru-reflect-line (TRL) calibration. This kit also contains a flush short circuit, a precision shim, and a fixed termination.

Electrical specifications

Device	Specifications
Frequency range	50 to 75 GHz
Termination	$\geq 38.2 \mathrm{~dB}$ return loss
Equivalent SWR	± 1.025

Replaceable parts

Description	Oty per kit	Agilent replacement part number
V-band fixed load	1	$11644-60025$
V-band standard section $\mathbf{(5 ~ c m)}$	$11644-60012$	
V-band shim	3	$11644-20013$
Short (V-band)	1	$11644-20015$
Slip pin (1.567 mm dia.)	1	$11644-20007$
$\mathbf{4 - 4 0}$ captive screw (0.41 inches long)	6	$1290-0765$
$\mathbf{4 - 4 0}$ captive screw (0.31 inches long)	24	$1390-0671$
Hex ball driver	1	$8710-0523$

Network Analyzer Accessories and Cal Kits

Agilent W11644A WR-10

 mechanical calibration kit, 75 GHz to 110 GHzThe Agilent W11644A calibration kit contains the precision mechanical standards required to calibrate the systematic errors of the Agilent PNA series network analyzers. This calibration kit has a precision 50 ohm airline for performing the thru-reflect-line (TRL) calibration. This kit also contains a flush short circuit, a precision shim, and a fixed termination.

Electrical specifications

Device	Specifications
Frequency range	75 to 110 GHz
Termination	$\geq 36.6 \mathrm{~dB}$ return loss
Equivalent SWR	± 1.03

Replaceable parts

Description	Oty per kit	Agilent replacement part number
W-band fixed load	1	$11643-60026$
W-band standard section	3	$11644-60013$
W-band shim	1	$11644-20014$
Short (W-band)	1	$11644-20015$
Slip pin (1.567 mm dia.)	6	$11644-20007$
$\mathbf{4 - 4 0}$ captive screw (0.41 inches long)	12	$1390-0765$
$\mathbf{4 - 4 0}$ captive screw (0.31 inches long)	24	$1390-0671$
Hex ball driver	1	$8710-0523$

Network Analyzer Accessories and Cal Kits

Overview

Electronic calibration (ECal) is a precision, single-connection, one, two or four-port calibration technique for your Agilent vector network analyzer. Agilent ECal modules use fully traceable and verifiable electronic impedance standards. The modules are state-of-the-art, solid-state devices with programmable and highly repeatable impedance states. ECal modules are transfer standards that provide consistent calibrations and eliminate operator errors while bringing convenience and simplicity to your calibration routine. Consistent calibrations provide consistent measurements.

ECal replaces the traditional calibration technique that uses mechanical standards. With mechanical standards, you are required to make numerous connections to the test ports for a single calibration. These traditional calibrations require intensive operator interaction, which are prone to error. With ECal, a full two-port calibration can be accomplished with a single connection to the ECal module and minimal operator interaction. This results in faster and more repeatable calibrations with less wear on the connectors - and on you. Calibrations for non-insertable devices are equally convenient and straightforward.

ECal modules and available options

Connector type	Frequency range (GHz)	Type	Agilent model	Available options
Type-F (75 ohm)	300 kHz to 3 GHz 1	2-port	85099C	UK6, 00F, 00M, M0F, 00A
Type-N (75 ohm)	300 kHz to 3 GHz 1	2-port	85096C	UK6, 00F, 00M, M0F, 00A
Type-N (50 ohm)	300 kHz to 9 GHz 1	2-port	85092C	1A7, A6J, UK6, 00F, 00M, MOF, 00A
Type-N (50 ohm)	300 kHz to $13.5 \mathrm{GHz}{ }^{1}$	4-port	N4431B Option 020	1A7, A6J, UK6
Type-N (50 ohm)	300 kHz to 18 GHz	2-port	N4690B	1A7, A6J, UK6, 00F, 00M, M0F, 00A
Type-N (50 ohm)	300 kHz to 18 GHz	4-port	N4432A	N/A
7-16	300 kHz to $7.5 \mathrm{GHz}{ }^{1}$	2-port	85098C	UK6, O0F, 00M, M0F, 00A ${ }^{1}$
7 mm	300 kHz to $9 \mathrm{GHz}{ }^{1}$	2-port	85091C	1A7, A6J, UK6
7 mm	300 kHz to 18 GHz	2-port	N4696B	1A7, A6J, UK6
7 mm	300 kHz to 18 GHz	4-port	N4432A Option 030	N/A
3.5 mm	300 kHz to 9 GHz 1	2-port	85093C	1A7, A6J, UK6, 00F, 00M, M0F, 00A 2
3.5 mm	300 kHz to $13.5 \mathrm{GHz}{ }^{1}$	4-port	N4431B Option 010	1A7, A6J, UK6
3.5 mm	300 kHz to 20 GHz	4-port	N4433A Option 010	N/A
3.5 mm	300 kHz to 26.5 GHz	2-port	N4691B	1A7, A6J, UK6, 00F, 00M, MOF, 00A ${ }^{2}$
2.92 mm	10 MHz to 40 GHz	2-port	N4692A	1A7, A6J, UK6, 00F, 00M, M0F, 00A ${ }^{3}$
2.4 mm	10 MHz to 50 GHz	2-port	N4693A	1A7, A6J, UK6, 00F, 00M, MOF, 00A 4
1.85 mm	10 MHz to 67 GHz	2-port	N4694A	1A7, A6J, UK6, 00F, 00M, M0F, 00A ${ }^{5}$

${ }^{1}$ ECal modules are specified to operate from 300 kHz , with typical performance down to 30 kHz .

Option descriptions

1A7	ISO 17025 compliant calibration
A6J	ANSI Z540 compliant calibration
UK6	Commercial calibration certificate with test data
00M	Connectors are male-male
00F	Connectors are female-female
MOF	Connectors are one male and one female

00A Adds Type-N adapters
00A ${ }^{1}$ Adds 7-16 adapters
00A ${ }^{2}$ Adds 3.5 mm adapters
00A ${ }^{3}$ Adds 2.92 mm adapters
00A ${ }^{4}$ Adds 2.4 mm adapters
00A ${ }^{5}$ Adds 1.85 mm adapters

Network Analyzer Accessories and Cal Kits

Ordering information

Select an ECal module based on the connector type required and the frequency range of your Agilent vector network analyzer.

Order an Agilent 85097B VNA interface kit if the ECal module will be used with Agilent 8753 or 8720 families of network analyzers.

The Agilent ENA, ENA-L, PNA, and PNA-L series network analyzers can control ECal modules directly via its USB port.

Agilent 85097B VNA interface kit

Network Analyzer Accessories and Cal Kits

Power limits

Maximum input power	
8509 x	+20 dBm
N469x	+10 dBm
Minimum input power	-45 dBm

Electrical characteristic corrected performance ${ }^{1}$ (Residual e-terms)

Ecal module specifications and characteristics

Specifications describe product performance covered by the product warranty over a temperature range of $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Characteristics describe performance that is useful in the application of the product, but not warranted. Typical values describe non-warranted performance that most units will exhibit. Characteristics and typical values are shown in italics.

2-port Ecal modules
7-16

$\mathbf{8 5 0 9 9 C}(\text { RF })^{2}$			
Frequency range	300 kHz to 300 MHz	300 MHz to 1 GHz	1 to 3 GHz
Directivity (dB)	50	48	43
Source match (dB)	48	45	38
Reflection tracking ($\pm \mathbf{d B})$	0.03	0.07	0.15
Transmission tracking ($\pm \mathbf{d B}$)	0.08	0.10	0.17
Load match (dB)	43	41	39

85099C (RF) ${ }^{3}$			
Frequency range	300 kHz to 300 MHz	300 MHz to 1 GHz	1 to 3 GHz
Directivity (dB)	48	43	32
Source match (dB)	46	41	26
Reflection tracking ($\pm \mathrm{dB}$)	0.06	0.09	0.35
Transmission tracking ($\pm \mathrm{dB}$)	0.08	0.12	0.35
Load match (dB)	43	40	29

${ }^{1}$ Except 10 MHz to 45 MHz on N469x modules, which are typical.
2 When mated with male connectors with a $0.77 \mathrm{~mm}(0.030 \mathrm{in})$ to $0.86 \mathrm{~mm}(0.034 \mathrm{in})$ pin diameter.
${ }^{3}$ Typical values when mated with male connectors with a $0.56 \mathrm{~mm}(0.022 \mathrm{in})$ to 1.07 mm (0.042 in) pin diameter.

Network Analyzer Accessories and Cal Kits

2-port Ecal modules (continued)

Type-N (50 ohms)

$\mathbf{8 5 0 9 2 C}(\mathbf{R F})$				
Frequency range	300 kHz to 1 GHz	1 to 3 GHz	3 to 6 GHz	6 to 9 GHz
Directivity (dB)	52	54	52	47
Source match (dB)	45	44	41	36
Reflection tracking ($\pm \mathbf{d B})$	0.04	0.04	0.06	0.07
Transmission tracking ($\pm \mathbf{d B})$	0.04	0.04	0.07	39
Load match (dB)	47	47	44	39

N4690B (microwave)	300 kHz to 10 MHz	10 to 500 MHz	500 MHz to 2 GHz	2 to 10 GHz	10 to 18 GHz
Frequency range	40	45	48	46	42
Directivity (dB)	35	40	43	40	35
Source match (dB)	0.07	0.05	0.03	0.03	
Reflection tracking ($\pm \mathbf{d B)}$	0.08	0.07	0.07		
Transmission tracking ($\pm \mathbf{d B)}$	0.12	35	42	41	38
Load match (dB)	29				

Type-N (75 ohms)

$\mathbf{8 5 0 9 6 C}(\mathbf{R F})$			
Frequency range	300 kHz to 300 MHz	300 MHz to 1 GHz	1 to 3 GHz
Directivity (dB)	50	48	43
Source match (dB)	48	45	38
Reflection tracking ($\pm \mathbf{d B})$	0.03	0.06	0.10
Transmission tracking ($\pm \mathbf{d B})$	0.08	0.09	0.16
Load match (dB)	43	41	39

$3.5 \mathrm{~mm}^{1}$

$\mathbf{8 5 0 9 3 C}(\mathbf{R F})$			300 kHz to 1 GHz	1 to 3 GHz
Frequency range	52	52	3 to 6 GHz	6 to 9 GHz
Directivity (dB)	44	44	50.5	47
Source match (dB)	0.03	0.03	39	34
Reflection tracking ($\pm \mathbf{d B})$	0.05	0.05	0.07	
Transmission tracking ($\pm \mathbf{d B)}$	0.04	47	0.07	44
Load match $(\mathbf{d B})$	47		40	

N4691B (microwave)						
Frequency range	300 kHz to 10 MHz	10 to 500 MHz	500 MHz to 2 GHz	2 to 10 GHz	10 to 20 GHz	20 to 26.5 GHz
Directivity (dB)	41	46	56	54	48	44
Source match (dB)	36	41	47	45	44	40
Reflection tracking ($\pm \mathrm{dB}$)	0.06	0.05	0.02	0.03	0.04	0.05
Transmission tracking ($\pm \mathrm{dB}$)	0.11	0.07	0.05	0.07	0.1	0.12
Load match (dB)	31	37	45	49	45	40

[^19]
Network Analyzer Accessories and Cal Kits

2-port Ecal modules (continued)

7 mm

85091C (RF)		300 kHz to 1 GHz	1 to 3 GHz	3 to 6 GHz
Frequency range	52	56	55	6 to 9 GHz
Directivity (dB)	45	44	41	45
Source match (dB)	0.04	0.04	0.07	0.10
Reflection tracking ($\pm \mathbf{d B})$	0.06	0.13	0.23	
Transmission tracking ($\pm \mathbf{d B})$	0.06	47	46	39
Load match (dB)	47			

N4696B (microwave)					
Frequency range (GHz)	300 kHz to 10 MHz	10 to 500 MHz	500 MHz to 2 GHz	2 to 10 GHz	10 to 18 GHz
Directivity (dB)	40	46	45	50	42
Source match (dB)	35	40	40	42	36
Reflection tracking ($\pm \mathrm{dB}$)	0.07	0.05	0.03	0.03	0.05
Transmission tracking ($\pm \mathrm{dB}$)	0.11	0.07	0.04	0.07	0.1
Load match (dB)	30	36	40	45	39

7-16

$\mathbf{8 5 0 9 8 C}(\mathbf{R F})$				
Frequency range	300 kHz to 1 GHz	1 to 3 GHz	3 to 6 GHz	6 to 7.5 GHz
Directivity (dB)	47	50	46	45
Source match (dB)	43	43	38	37
Reflection tracking ($\pm \mathbf{d B})$	0.03	0.03	0.05	0.06
Transmission tracking ($\pm \mathbf{d B})$	0.05	0.06	0.08	0.10
Load match (dB)	42	43	41	38

2.92 mm

N4692A (microwave)					
Frequency range (GHz)	10 to 45 MHz , typical	45 MHz to 2 GHz	2 to 20 MHz	20 to 30 GHz	30 to 40 GHz
Directivity (dB)	35	45	43	39	38
Source match (dB)	30	36	35	30	29
Reflection tracking ($\pm \mathrm{dB}$)	0.10	0.08	0.08	0.10	0.10
Transmission tracking ($\pm \mathrm{dB}$)	0.10	0.14	0.14	0.20	0.25
Load match (dB)	27	36	37	33	33

2.4 mm

N4693A (microwave)						
Frequency range (GHz)	10 to 45 MHz , typical	45 MHz to 2 GHz	2 to 10 MHz	10 to 20 GHz	20 to 40 GHz	40 to 50 GHz
Directivity (dB)	32	55	49	45	43	41
Source match (dB)	25	46	42	37	35	30
Reflection tracking ($\pm \mathrm{dB}$)	0.05	0.03	0.04	0.05	0.06	0.08
Transmission tracking ($\pm \mathrm{dB}$)	0.10	0.06	0.08	0.11	0.13	0.17
Load match (dB)	24	45	42	40	38	36

Network Analyzer Accessories and Cal Kits

Coaxial Electronic Cal Kits (continued)

2-port Ecal modules (continued)

1.85 mm

N4694A (microwave)								
Frequency range (GHz)	10 to 45 MHz , typical	45 MHz to 2 GHz	2 to 20 GHz	20 to 30 GHz	30 to 40 GHz	40 to 50 GHz	50 to 60 GHz	60 to 67 GHz
Directivity (dB)	33	50	50	46	44	42	41	38
Source match (dB)	25	38	39	35	34	33	30	27
Reflection tracking ($\pm \mathrm{dB}$)	0.05	0.04	0.04	0.05	0.06	0.07	0.08	0.09
Transmission tracking ($\pm \mathrm{dB}$)	0.15	0.07	0.1	0.11	0.13	0.15	0.19	0.25
Load match (dB)	25	41	44	42	40	38	36	32

4-port modules

Type-N (50 ohms) ${ }^{1}$

N4431B (RF) option 020						
Frequency range	300 kHz to 1 GHz	1 to 3 GHz	3 to 6 GHz	6 to 8 GHz	8 to 9 GHz	9 to 13.5 GHz
Thru paths AB, CD, AD, BC						
Directivity (dB)	55	52	47	44	42	40
Source match (dB)	47	43	42	40	39	31
Reflection tracking ($\pm \mathrm{dB}$)	0.03	0.04	0.04	0.05	0.06	0.11
Transmission tracking ($\pm \mathrm{dB}$)	0.07	0.10	0.14	0.20	0.22	0.35
Load match (dB)	47	45	40	38	35	26
Thru paths AC, BD						
Directivity (dB)	55	52	47	44	42	40
Source match (dB)	47	43	42	40	39	31
Reflection tracking ($\pm \mathrm{dB}$)	0.03	0.04	0.04	0.05	0.06	0.11
Transmission tracking ($\pm \mathrm{dB}$)	0.07	0.09	0.13	0.15	0.16	0.32
Load match (dB)	47	45	40	38	36	28

3.5 mm ${ }^{1}$

N4431B (RF) option 010						
Frequency range	300 kHz to 1 GHz	1 to 3 GHz	3 to 6 GHz	6 to 8 GHz	8 to 9 GHz	9 to 13.5 GHz
Thru paths AB, CD, AD, BC						
Directivity (dB)	57	55	52	50	47	40
Source match (dB)	50	47	45	44	43	32
Reflection tracking ($\pm \mathrm{dB}$)	0.03	0.03	0.04	0.04	0.05	0.1
Transmission tracking ($\pm \mathrm{dB}$)	0.06	0.09	0.12	0.14	0.20	0.33
Load match (dB)	47	46	45	44	42	28
Thru paths AC, BD						
Directivity (dB)	57	55	52	50	47	40
Source match (dB)	50	47	45	44	43	32
Reflection tracking ($\pm \mathrm{dB}$)	0.03	0.03	0.04	0.04	0.05	0.1
Transmission tracking ($\pm \mathrm{dB}$)	0.06	0.08	0.10	0.12	0.14	0.3
Load match (dB)	47	46	45	45	43	29

[^20]
Network Analyzer Accessories and Cal Kits

Mixed-connector options
2-port (85092C/3C/8C ECal modules only)

	Port A option				Port B option					
Model number	Type	(f)	(m)	Type	(f)	(m)	Type	(f)	(m)	
$85092 C$	Type-N 50 ohm	103	104	3.5 mm	201	202	$7-16^{1}$	205	206	
$85093 C$	3.5 mm	101	102	Type-N 50 ohm	203	204	$7-16^{1}$	205	206	
85098 C	$7-161$	105	106	3.5 mm	201	202		Type-N 50 ohm	203	

4-port (N4431B ECal module only)

Connector type	Port A option	Port B option	Port C option	Port D option
$\mathbf{3 . 5 ~ m m ~ (f) ~}$	101	201	301	401
$\mathbf{3 . 5 ~ m m ~ (m)}$	102	202	302	402
Type-N 50 ohm (f)	103	203	303	403
Type-N 50 ohm (m)	104	204	304	404
$\mathbf{7 - 1 6 (f) ~} \mathbf{1}^{\mathbf{1}}$	105	205	305	405
$\mathbf{7 - 1 6 (m) ~}$	106	206	406	

4-port (N4432A ECal module only)

Connector type	Port A option	Port B option	Port C option	Port D option
$\mathbf{3 . 5 ~ m m ~ (f)}$	101	201	301	401
$\mathbf{3 . 5 ~ m m ~ (m)}$	102	202	302	402
Type-N 50 ohm (f)	103	203	303	403
Type-N 50 ohm (m)	104	204	304	404
$\mathbf{7 m m}$	105	205	305	405

[^21]
Network Analyzer Accessories and Cal Kits

Agilent 85055A verification kit, Type-N

The Agilent 85055A Type-N verification kit is used with an Agilent 85054B Type-N calibration kit and network analyzers, such as the Agilent PNA, or PNA-L series. Use the Agilent 85055A verification kit to verify that your network analyzer system is working within its specifications, and that you have performed a valid measurement calibration. This verification kit is traceable to the U.S. National Institute of Standards and Technology (NIST).

Replaceable parts

Description	Oty per kit	Agilent replacement part number
$\mathbf{2 0} \mathbf{d B}$ attenuator with data	1	$85055-60003$
$\mathbf{5 0} \mathbf{d B}$ attenuator with data	1	$85055-60004$
$\mathbf{5 0}$ ohm airline with data	1	$85055-60006$
$\mathbf{2 5}$ ohm mismatch airline with data	1	$85055-60007$
$\mathbf{O p e n - e n d ~} \mathbf{5 . 5}$ wrench	1	$8710-1770$

Agilent 85029B verification kit, 7 mm

Measuring known devices, other than the calibration standards, is a convenient way of verifying that the Agilent ENA, or PNA series is operating properly. The Agilent 85029B verification kit contains a set of precision 7 mm devices, with data traceable to NIST, used to verify the calibrated performance of an Agilent ENA series. The devices have precision 7 mm connectors and include a 20 dB pad, a 50 dB pad, and a mismatch attenuator. The verification process requires only an Agilent 85031B calibration kit and an Agilent 85029B verification kit. (Option 001 is intended solely for use with the Agilent 8702B lightwave component analyzer. Option 001 adds verification data that is compatible with the Agilent 8702B.)

Replaceable parts

The three attenuators are separately available and should be ordered by the numbers given below. Each of these devices has a serial number and the kit has a serial number. All four serial numbers appear on the verification disc label.

Description	Agilent part number
$\mathbf{7 m m}$ mismatch attenuator	$85029-60004$
$\mathbf{7 m m} \mathbf{2 0} \mathbf{~ d B}$ attenuator	$85029-60005$
$\mathbf{7 m m} \mathbf{5 0} \mathbf{~ d B}$ attenuator	$85029-60006$

Network Analyzer Accessories and Cal Kits

Agilent 85051B verification kit, 7 mm

The Agilent 85051B 7 mm verification kit is used with an Agilent 85050B/C/D 7 mm calibration kit and network analyzers, such as the Agilent PNA, or PNA-L series. Use the Agilent 85051B verification kit to verify that your network analyzer system is working within its specifications, and that you have performed a valid measurement calibration. This verification kit is traceable to the U.S National Institute of Standards and Technology (NIST).

Replaceable parts

Description	Oty per kit	Agilent replacement part number
$\mathbf{2 0} \mathbf{d B}$ attenuator with data	1	$85051-60001$
$\mathbf{5 0} \mathbf{d B}$ attenuator with data	1	$85051-60002$
$\mathbf{5 0}$ ohm airline with data	1	$85051-60010$
$\mathbf{2 5}$ ohm mismatch airline with data	1	$85051-60011$
$\mathbf{O p e n}-$ end $\mathbf{5 . 5}$ wrench	1	$8710-1770$

Agilent 85053B verification kit, 3.5 mm

The Agilent 85053B 3.5 mm verification kit is used with an Agilent 85052B/C/D 3.5 mm calibration kit and network analyzers, such as the Agilent PNA, or PNA-L series. Use the Agilent 85053B verification kit to verify that your network analyzer system is working within its specifications, and that you have performed a valid measurement calibration. This verification kit is traceable to the U.S National Institute of Standards and Technology (NIST).

Replaceable parts

Description	Oty per kit	Agilent replacement part number
$\mathbf{2 0} \mathbf{d B}$ attenuator with data	1	$85053-60001$
$\mathbf{4 0} \mathbf{~ d B}$ attenuator with data	1	$85053-60002$
$\mathbf{5 0}$ ohm airline with data	1	$85053-60008$
$\mathbf{2 5} \mathbf{~ o h m ~ m i s m a t c h ~ a i r l i n e ~ w i t h ~ d a t a ~}$	1	$85053-60009$

Network Analyzer Accessories and Cal Kits

Agilent 85057B verification kit, 2.4 mm

The Agilent 85057B 2.4 mm verification kit is used with an Agilent 85056A 2.4 mm calibration kit and network analyzers, such as the Agilent PNA, or PNA-L series. Use the Agilent 85057B verification kit to verify that your network analyzer system is working within its specifications, and that you have performed a valid measurement calibration. This verification kit is traceable to the U.S National Institute of Standards and Technology (NIST).

Replaceable parts

Description	Oty per kit	Agilent replacement part number
$\mathbf{2 0} \mathbf{~ d B}$ attenuator with data	1	$85057-60010$
$\mathbf{4 0} \mathbf{~ d B}$ attenuator with data	1	$85057-60011$
$\mathbf{5 0} \mathbf{~ o h m}$ airline with data	1	$85057-60008$
$\mathbf{2 0} \mathbf{~ o h m}$ mismatch airline with data	1	$85057-60009$

Agilent $\mathbf{8 5 0 5 8 V}$ verification kit, 1.85 mm

The Agilent 85058 V 1.85 mm verification kit is used with an Agilent 85058B/E 1.85 mm calibration kit and Agilent PNA series network analyzers. Use the Agilent 85058 V verification kit to verify your measurement calibration and also to verify that your network analyzer system is operating within its specifications. This verification kit is traceable to the U.S. National Institute of Standards and Technology (NIST).

Replaceable parts

Description	Oty per kit	Agilent replacement part number
$\mathbf{4 0} \mathbf{~ d B}$ attenuator with data	1	$85058-60125$
$\mathbf{1 0 ~ d B}$ attenuator with data	1	$85058-60126$
$\mathbf{5 0} \mathbf{~ o h m}$ beaded line with data	1	$85058-60116$
$\mathbf{2 5} \mathbf{~ o h m}$ mismatch beaded line with data	1	$85058-60117$

Network Analyzer Accessories and Cal Kits

Agilent R11645A W-28 verification kit

The Agilent R band millimeter-waveguide verification kit is used with the R11644A calibration kit and network analyzer systems, such as the Agilent PNA, or PNA-L series. Use the R11645A series verification kit to verify that your network analyzer system is working within its specifications, and that you have performed a valid measurement calibration. This verification kit is traceable to the U.S National Institute of Standards and Technology (NIST).

Replaceable parts

Description		Agilent replacement part number
$\mathbf{2 0} \mathbf{d B}$ attenuator with data	1	$11645-60021$
$\mathbf{5 0} \mathbf{d B}$ attenuator with data	1	$11645-60022$
$\mathbf{5 0}$ ohm airline with data	1	$11645-60016$
$\mathbf{2 5}$ ohm mismatch airline with data	1	$11645-60011$
Lock washer	6	$2190-0030$
Hex nut	6	$2260-0002$
Waveguide alignment pin (short)	6	$11644-20009$
Waveguide alignment pin (long)	6	$11644-20006$
$\mathbf{4 - 4 0}$ Hex ball screw (0.75 inches long)	6	$3030-0721$
$\mathbf{3 / 3 2}$-inch Hex ball driver	1	$8710-1539$

Agilent 011645A W-22 verification kit

The Agilent 0 band millimeter-waveguide verification kit is used with the 011644A calibration kit and network analyzer systems, such as the Agilent PNA, or PNA-L series. Use the 011645A series verification kit to verify that your network analyzer system is working within its specifications, and that you have performed a valid measurement calibration. This verification kit is traceable to the U.S National Institute of Standards and Technology (NIST).

Replaceable parts

Description		Oty per kit
$\mathbf{2 0} \mathbf{d B}$ attenuator with data	1	$11645-60023$
$\mathbf{5 0} \mathbf{d B}$ attenuator with data	1	$11645-60024$
$\mathbf{5 0}$ ohm airline with data	1	$11645-60017$
$\mathbf{2 5}$ ohm mismatch airline with data	1	$11645-60012$
$\mathbf{4 - 4 0}$ Hex ball screw (0.31 inch)	6	$1390-0671$
$\mathbf{4 - 4 0}$ Hex ball screw (0.43 inch)	6	$1390-0764$
Waveguide alignment pin (short)	6	$11644-20008$
Waveguide alignment pin (long)	6	$11644-20006$
$\mathbf{3 / 3 2}$-inch Hex ball driver	1	$8710-1539$

Network Analyzer Accessories and Cal Kits

Agilent U11645A W-19 verification kit

The Agilent U band millimeter-waveguide verification kit is used with the U11644A calibration kit and network analyzer systems, such as the Agilent PNA series. Use the U11645A series verification kit to verify that your network analyzer system is working within its specifications, and that you have performed a valid measurement calibration. This verification kit is traceable to the U.S National Institute of Standards and Technology (NIST).

Replaceable parts

Description	Oty per kit	Agilent replacement part number
$\mathbf{2 0} \mathbf{d B}$ attenuator with data	1	$11645-60025$
$\mathbf{5 0} \mathbf{d B}$ attenuator with data	1	$11645-60006$
$\mathbf{5 0} \mathbf{~ o h m}$ airline with data	1	$11645-60018$
$\mathbf{2 5} \mathbf{~ o h m}$ mismatch airline with data	1	$11645-60013$
$\mathbf{4 - 4 0}$ Hex ball screw (0.31 inch)	6	$1390-0671$
$\mathbf{4 - 4 0}$ Hex ball screw (0.43 inch)	6	$1390-0764$
Waveguide alignment pin (short)	6	$11644-20008$
Waveguide alignment pin (long)	6	$11644-20006$
$\mathbf{3 / 3 2 - i n c h}$ Hex ball driver	1	$8710-1539$

Agilent V11645A W-15 verification kit

The Agilent V band millimeter-waveguide verification kit is used with the V11644A calibration kit and network analyzer systems, such as the Agilent PNA series. Use the V11645A series verification kit to verify that your network analyzer system is working within its specifications, and that you have performed a valid measurement calibration. This verification kit is traceable to the U.S National Institute of Standards and Technology (NIST).

Description	Oty per kit	Agilent replacement part number
$\mathbf{2 0} \mathbf{d B}$ attenuator with data	1	$11645-60007$
$\mathbf{5 0} \mathbf{d B}$ attenuator with data	1	$11645-60008$
$\mathbf{5 0}$ ohm airline with data	1	$11645-60019$
$\mathbf{2 5}$ ohm mismatch airline with data	1	$11645-60014$
$\mathbf{4 - 4 0}$ Hex ball screw (0.31 inch)	6	$1390-0671$
$\mathbf{4 - 4 0}$ Hex ball screw (0.41 inch)	6	$1390-0765$
Waveguide alignment pin \mathbf{V} / \mathbf{W}	6	$11644-20007$
$\mathbf{3 / 3 2}$-inch Hex ball driver	1	$8710-1539$

Network Analyzer Accessories and Cal Kits

Agilent W11645A W-10 verification kit

The Agilent W band millimeter-waveguide verification kit is used with the W11644A calibration kit and network analyzer systems, such as the Agilent PNA series. Use the W11645A series verification kit to verify that your network analyzer system is working within its specifications, and that you have performed a valid measurement calibration. This verification kit is traceable to the U.S National Institute of Standards and Technology (NIST).

Description	Oty per kit	Agilent replacement part number
$\mathbf{2 0} \mathbf{~ d B}$ attenuator with data	1	$11645-60009$
$\mathbf{5 0} \mathbf{~ B B}$ attenuator with data	1	$11645-60010$
$\mathbf{5 0}$ ohm airline with data	1	$11645-60020$
$\mathbf{2 5}$ ohm mismatch airline with data	1	$11645-60015$
$\mathbf{4 - 4 0}$ Hex ball screw ($\mathbf{0 . 3 1}$ inch)	6	$1390-0671$
$\mathbf{4 - 4 0}$ Hex ball screw (0.41 inch)	6	$1390-0765$
Waveguide alignment pin \mathbf{V} / \mathbf{W}	6	$11644-20007$
$\mathbf{3 / 3 2}$-inch Hex ball driver	1	$8710-1539$

Network Analyzer Accessories and Cal Kits

Agilent 85025 and 85037 series detectors (ac/dc)

The Agilent 85025 and 85037 series detectors are designed specifically for operation with the Agilent 8757 scalar network analyzer. The Agilent 85025/37 detectors detect either a modulated (ac) or an unmodulated (dc) microwave signal.

Agilent 85025C detector adapters

The Agilent 85025C adapters matches the scalar analyzer display to most standard crystal, silicon and gallium arsenide detectors. This enables the user to operate up to 110 GHz with the Agilent 8757. The Agilent 8502C detector adapter is designed for use with the Agilent 8757 only, and can operate in either AC or DC detection modes.

Scalar network analyzer accessories

Coaxial detector summary

Agilent model	Frequency range	Connector type	Dynamic range	Frequency	Return loss
85025A ${ }^{3}$	$\begin{aligned} & 10 \mathrm{MHz} \text { to } \\ & 18 \mathrm{GHz} \end{aligned}$	Type-N (m) $7 \mathrm{~mm}{ }^{2}$	AC mode +16 to -55 dBm DC mode +16 to 50 dBm	$\begin{aligned} & 0.01 \text { to } 0.04 \mathrm{GHz} \\ & 0.04 \text { to } 4 \mathrm{GHz} \\ & 4 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~dB} \\ & 20 \mathrm{~dB} \\ & 17 \mathrm{~dB} \end{aligned}$
85025B ${ }^{3}$	$\begin{aligned} & 10 \mathrm{MHz} \text { to } \\ & 26.5 \mathrm{GHz} \end{aligned}$	3.5 mm (m)	AC mode +16 to -55 dBm DC mode +16 to 50 dBm	$\begin{aligned} & 0.01 \text { to } 0.04 \mathrm{GHz} \\ & 0.04 \text { to } 4 \mathrm{GHz} \\ & 4 \text { to } 18 \mathrm{GHz} \\ & 18 \text { to } 26.5 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~dB} \\ & 20 \mathrm{~dB} \\ & 17 \mathrm{~dB} \\ & 12 \mathrm{~dB} \end{aligned}$
85025D ${ }^{3}$	$\begin{aligned} & 10 \mathrm{MHz} \text { to } \\ & 50 \mathrm{GHz} \end{aligned}$	2.4 mm (m)	AC mode +16 to -55 dBm DC mode + 16 to 50 dBm	0.01 to 0.1 GHz 0.1 to 20 GHz 20 to 26.5 GHz 26.5 to 40 GHz 40 to 50 GHz	10 dB 20 dB 20 dB 15 dB 9 dB
85025E ${ }^{3}$	$\begin{aligned} & 10 \mathrm{MHz} \text { to } \\ & 26.5 \mathrm{GHz} \end{aligned}$	3.5 mm (m)	AC mode +16 to -55 dBm DC mode +16 to 50 dBm	0.01 to 0.1 GHz 0.1 to 18 GHz 18 to 25 GHz 25 to 26.5 GHz	10 dB 25 dB 25 dB 23 dB
85037A ${ }^{1}$	$\begin{aligned} & 10 \mathrm{MHz} \text { to } \\ & 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \text { Type-N (m) } \\ & 7 \mathrm{~mm}{ }^{2} \end{aligned}$	AC mode +20 to -55 dBm DC mode +20 to 50 dBm	$\begin{aligned} & 0.01 \text { to } 0.04 \mathrm{GHz} \\ & 0.04 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~dB} \\ & 20 \mathrm{~dB} \end{aligned}$
85037B ${ }^{1}$	$\begin{aligned} & 10 \mathrm{MHz} \text { to } \\ & 26.5 \mathrm{GHz} \end{aligned}$	3.5 mm (m)	AC mode +20 to -55 dBm DC mode $+20 \text { to } 50 \text { dBm }$	$\begin{aligned} & 0.01 \text { to } 0.04 \mathrm{GHz} \\ & 0.04 \text { to } 18 \mathrm{GHz} \\ & 18 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~dB} \\ & 20 \mathrm{~dB} \\ & 18 \mathrm{~dB} \end{aligned}$

${ }^{1}$ The Agilent 85037A/B specifications are applicable when used with the Agilent 8757 D scalar network analyzer. The absolute power accuracy and dynamic power accuracy specifications apply after a calibration via the Agilent 8757D Option 002's internal power calibrator.
${ }^{2}$ Option 001 changes to a 7 mm connector.
${ }^{3}$ The Agilent 85025 and 85037 series detectors and the Agilent $85025 C$ detector adapter require Agilent 8757 D revision 2.0 or higher.

Network Analyzer Accessories and Cal Kits

Agilent 85027 series directional bridges (AC/DC)

The Agilent 85027 series directional bridges are designed to operate with either the HP 8757 in AC or DC detection modes. These bridges offer high directivity, excellent test port matching and a measurement range of up to 50 GHz in coax.

Directional bridge summary

Agilent model	Frequency range	Nominal impedance	Connector input	Connector test port	Frequency	Directivity (dB)	Frequency	Test port match (SWR)
85027A	10 MHz to 18 GHz	50Ω	Type-N (f)	7 mm	0.01 to 18 GHz	40 dB	0.01 to 8.4 GHz	<1.15
							8.4 to 12.4 GHz	<1.25
							12.4 to 18 GHz	<1.43
85027B	10 MHz to 26.5 GHz	50Ω	3.5 mm (f)	3.5 mm (f)	$\begin{aligned} & 0.01 \text { to } 20 \mathrm{GHz} \\ & 20 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~dB} \\ & 36 \mathrm{~dB} \end{aligned}$	0.01 to 8.4 GHz	<1.15
							8.4 to 20 GHz	<1.43
							20 to 26.5 GHz	<1.78
$85027 C$	10 MHz to 18 GHz	50Ω	Type-N (f)	Type-N (f)	$\begin{aligned} & 0.01 \text { to } 12.4 \mathrm{GHz} \\ & 12.4 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 36 \mathrm{~dB} \\ & 34 \mathrm{~dB} \end{aligned}$	0.01 to 8.4 GHz	<1.15
							8.4 to 12.4 GHz	<1.25
							12.4 to 18 GHz	<1.43
85027D	10 MHz to 50 GHz	50Ω	2.4 mm (f)	2.4 mm (m)	0.01 to 20 GHz	36 dB	0.01 to 16 GHz	<1.18
					20 to 26.5 GHz	32 dB	16 to 30 GHz	<1.27
					26.5 to 40 GHz	30 dB	30 to 40 GHz	<1.57
					40 to 50 GHz	25 dB	40 to 50 GHz	typically <1.85
85027E	10 MHz to 26.5 GHz	50Ω	3.5 mm (f)	3.5 mm (m)	0.01 to 20 GHz	40 dB	0.01 to 8.4 GHz	<1.15
					20 to 26.5 GHz	36 dB	8.4 to 20 GHz	<1.43
							20 to 26.5 GHz	<1.78

Power Sensors

Agilent N1921A/22A P-series wideband power sensors

The Agilent P -series wideband power sensors are designed for use with the P -series power meters for measuring CW, average and peak signals with video bandwidth up to 30 MHz . The N192xA sensors are the first to provide internal zero and calibration. This feature eliminates the multiple connections associated with using an external calibration source, thus minimizing connector wear, test time and measurement uncertainty. The operating frequency range covers from 50 MHz to 40 GHz with wide dynamic range of -35 dBm to +20 dBm .

Agilent E9320 peak and average power sensors

E9320 peak and average power sensors cover the 50 MHz to $6 / 18 \mathrm{GHz}$ frequency ranges and -65 to +20 dBm power range. They are optimized for comprehensive measurements on pulsed envelopes and signals with complex modulation. When teamed with the Agilent EPM-P series power meters (E4416A/17A), they can handle test signal envelopes with up to 5 MHz video bandwidth. E9320 peak and average sensors/meters feature a two-mode operation, 'normal' for most average and peak measurements (with or without time gating), and 'average only' for average power measurements on low level or CW signals.

Agilent E9300 average power sensors

E-series 9300 wide dynamic range, average power sensors are designed for use with the EPM family of power meters. It has high dynamic range of $80 \mathrm{~dB}(-60$ to $+44 \mathrm{dBm})$ and wide frequency range (9 kHz to 18 GHz), depending on sensor model. It is capable of accurately measuring the average power of modulated signals over wide dynamic range, regardless of signal bandwidth.

Agilent E441xA CW power sensors

E4412/13A power sensor permits measuring continuous wave (CW) power over an extended dynamic range from -70 to +20 dBm , up to a frequency range of 26.5 GHz . Their 90 dB range makes them ideal for wide-dynamic range applications such as high-attenuation component measurements. The calibration factor is measured and stored in an EEPROM within each individual sensor and downloaded into the meter automatically. Since the correction factors are derived from a CW source, they do not provide an accurate average power reading for modulated signal.

Agilent 8480 series power sensors

The 8480 series power sensors are designed for use with the EPM series, EPM-P series power meters. These thermocouple and diode power sensors measure average power for all signal types regardless of signal bandwidth and provide extraordinary accuracy, stability, and SWR over a wide range of frequencies (100 kHz to 110 GHz) and power levels (-70 dBm to +44 dBm).

Agilent N192xA series power sensors

Agilent E441xA, E9300, E9320 series power sensors

Agilent 8480 series power sensors

P-series wideband power sensors

100 mW sensors (-35 to +20 dBm)

Agilent model	Minimum frequency range	Maximum frequency range	Minimum power range	Maximum power range	Measurement type	Maximum SWR	Connector type	Video bandwidth (MHz)	Works with	Option
N1921A	50 MHz	18 GHz	$\begin{aligned} & -35 \mathrm{dBm} \\ & (0.316 \mu \mathrm{~W}) \end{aligned}$	$\begin{aligned} & +20 \mathrm{dBm} \\ & (100 \mathrm{~mW}) \end{aligned}$	CW, peak, average, peak-to-average ratio, time-gated measurements; rise time and fall time, pulse width measurement	50 MHz to 10 GHz : 1.2 10 GHz to $18 \mathrm{GHz}: 1.26$	Type-N (m)	30 MHz	P-series power meters	C35
N1922A	50 MHz	40 GHz	$\begin{aligned} & -35 \mathrm{dBm} \\ & (0.316 \mu \mathrm{~W}) \end{aligned}$	$\begin{aligned} & +20 \mathrm{dBm} \\ & (100 \mathrm{~mW}) \end{aligned}$	CW, peak, average, peak-to-average ratio, time-gated measurements; rise time and fall time, pulse width measurement	50 MHz to $10 \mathrm{GHz}: 1.2$ 10 GHz to $18 \mathrm{GHz}: 1.26$ 18 GHz to $26.5 \mathrm{GHz}: 1.3$ 26.5 GHz to $40 \mathrm{GHz}: 1.5$	2.4 mm (m)	30 MHz	P-series power meters	

Available options:
A6J ANSI Z540 compliant calibration with test data
OB1 Additional english language manual set
105 Fixed cable option length $1.5 \mathrm{~m}(5 \mathrm{ft})$
106 Fixed cable option length $3 \mathrm{~m}(10 \mathrm{ft})$
107 Fixed cable option length $10 \mathrm{~m}(31 \mathrm{ft})$
1A7 ISO 17025 compliant calibration with data
C35 50 MHz to $18.5 \mathrm{GHz}, 3.5 \mathrm{~mm}$ male input (for N1921A only)

Power Sensors

E9320 peak and average power sensors

100 mW sensors (-65 to +20 dBm)

Agilent model	Minimum frequency range	Maximum frequency range	Minimum power range (Average)	Maximum power range (Average)	Peak and average/ average/ CW	Maximum SWR	Connector type	Video bandwidth	Works with
E9321A	50 MHz	6 GHz	$\begin{aligned} & -65 \mathrm{dBm} \\ & (320 \mathrm{pW}) \end{aligned}$	$\begin{aligned} & +20 \mathrm{dBm} \\ & (100 \mathrm{~mW}) \end{aligned}$	CW, peak and average	50 MHz to 2 GHz 1.12 2 GHz to 10 GHz 1.16 10 GHz to 16 GHz 1.23 16 GHz to 18 GHz 1.27	Type-N (m)	300 kHz	EPM-P and P-series* power meters
E9325A	50 MHz	18 GHz	$\begin{aligned} & -65 \mathrm{dBm} \\ & (320 \mathrm{pW}) \end{aligned}$	$+20 \mathrm{dBm}$ (100 mW)	CW, peak and average	50 MHz to 2 GHz 1.12 2 GHz to 10 GHz 1.16 10 GHz to 16 GHz 1.23 16 GHz to 18 GHz 1.27	Type-N (m)	300 kHz	EPM-P and P-series* power meters

100 mW sensors ($\mathbf{- 6 0}$ to $+\mathbf{2 0} \mathrm{dBm}$)

E9322A	50 MHz	6 GHz	$\begin{aligned} & -60 \mathrm{dBm} \\ & (1 \mathrm{nW}) \end{aligned}$	$+20 \mathrm{dBm}$ (100 mW)	CW, peak and average	50 MHz to 2 GHz 1.12 2 GHz to 10 GHz 1.18 10 GHz to 16 GHz 1.21 16 GHz to 18 GHz 1.27	Type-N (m)	1.5 MHz	EPM-P and P-series* power meters
E9323A	50 MHz	6 GHz	$-60 \mathrm{dBm}$ (1 nW)	$+20 \mathrm{dBm}$ (100 mW)	CW, peak and average	50 MHz to 2 GHz 1.12 2 GHz to 16 GHz 1.22 16 GHz to 18 GHz 1.26	Type-N (m)	5 MHz	EPM-P and P-series* power meters
E9326A	50 MHz	18 GHz	$\begin{aligned} & -60 \mathrm{dBm} \\ & (1 \mathrm{nW}) \end{aligned}$	$+20 \mathrm{dBm}$ (100 mW)	CW, peak and average	50 MHz to 2 GHz 1.12 2 GHz to 10 GHz 1.18 10 GHz to 16 GHz 1.21 16 GHz to 18 GHz 1.27	Type-N (m)	1.5 MHz	EPM-P and P-series* power meters
E9327A	50 MHz	18 GHz	$\begin{aligned} & -60 \mathrm{dBm} \\ & (1 \mathrm{nW}) \end{aligned}$	$+20 \mathrm{dBm}$ (100 mW)	CW, peak and average	50 MHz to 2 GHz 1.12 2 GHz to 16 GHz 1.22 16 GHz to 18 GHz 1.26	Type-N (m)	5 MHz	EPM-P and P-series* power meters

Available options:
A6J ANSI Z540 compliant calibration with test data
OB1 English language operating and service guide
ABD German language operating and service guide
ABE Spanish language operating and service guide
ABF French language operating and service guide
ABJ Japanese language operating and service guide
ABZ Italian language operating and service guide
Note:
E9320 Peak and average power sensor only workable with cables:
E9288A Power sensor cable, length 5 ft (1.5 m)
E9288B Power sensor cable, length $10 \mathrm{ft}(3 \mathrm{~m})$
E9288C Power sensor cable, length 31 ft (10 m)

* N1917A/B/C cable adapter \& backward compatibility firmware are required

E9300 Wide dynamic range average power sensors

25 W sensors (-30 to +44 dBm)

Agilent model	Minimum frequency range	Maximum frequency range	Minimum power range	Maximum power range	Peak and average/ average/ CW	Maximum SWR	Connector type	Works with	Options
E9300B	10 MHz	18 GHz	$\begin{aligned} & -30 \mathrm{dBm} \\ & (1 \mathrm{uW}) \end{aligned}$	$\begin{aligned} & +44 \mathrm{dBm} \\ & (25 \mathrm{~W}) \end{aligned}$	CW and average	10 MHz to 30 MHz 1.21 30 MHz to 2 GHz 1.15 2 GHz to 14 GHz 1.20 14 GHz to 16 GHz 1.23 16 GHz to 18 GHz 1.27	Type-N (m)	EPM-P, EPM and P-series* power meters	
E9301B	10 MHz	6 GHz	$-30 \mathrm{dBm}$ (1 uW)	$\begin{aligned} & +44 \mathrm{dBm} \\ & (25 \mathrm{~W}) \end{aligned}$	CW and average	10 MHz to 30 MHz 1.21 30 MHz to 2 GHz 1.15 2 GHz to 6 GHz 1.20	Type-N (m)	EPM-P, EPM and P-series* power meters	

1 W sensors (-50 to +30 dBm)

E9300H	10 MHz	18 GHz	$-50 \mathrm{dBm}$ (10 nW)	$+30 \mathrm{dBm}$ (1 W)	CW and average	10 MHz to 30 MHz 1.21 30 MHz to 2 GHz 1.15 2 GHz to 14 GHz 1.20 14 GHz to 16 GHz 1.23 16 GHz to 18 GHz 1.27	Type-N (m)	EPM-P, EPM and P-series* power meters	
E9301H	10 MHz	6 GHz	$-50 \mathrm{dBm}$ (10 nW)	$\begin{aligned} & +30 \mathrm{dBm} \\ & (1 \mathrm{~W}) \end{aligned}$	CW and average	10 MHz to 30 MHz 1.21 30 MHz to 2 GHz 1.15 2 GHz to 6 GHz 1.20	Type-N (m)	EPM-P, EPM and P-series* power meters	

100 mW sensors ($-\mathbf{6 0}$ to $+\mathbf{2 0} \mathrm{dBm}$)

E9300A	10 MHz	18 GHz	$\begin{aligned} & -60 \mathrm{dBm} \\ & (1 \mathrm{nW}) \end{aligned}$	$+20 \mathrm{dBm}$ (100 mW)	CW and average	10 MHz to 30 MHz 1.21 30 MHz to 2 GHz 1.15 2 GHz to 14 GHz 1.20 14 GHz to 16 GHz 1.23 16 GHz to 18 GHz 1.27	Type-N (m)	EPM-P, EPM and P-series* power meters	H24, H25
E9301A	10 MHz	6 GHz	$\begin{aligned} & -60 \mathrm{dBm} \\ & (1 \mathrm{nW}) \end{aligned}$	$+20 \mathrm{dBm}$ (100 mW)	CW and average	10 MHz to 30 MHz 1.21 30 MHz to 2 GHz 1.15 2 GHz to 6 GHz 1.20	Type-N (m)	EPM-P, EPM and P-series* power meters	
E9304A	9 kHz	6 GHz	$\begin{aligned} & -60 \mathrm{dBm} \\ & (1 \mathrm{nW}) \end{aligned}$	$\begin{aligned} & +20 \mathrm{dBm} \\ & (100 \mathrm{~mW}) \end{aligned}$	CW and average	9 kHz to 2 GHz 1.15 2 GHz to 6 GHz 1.20	Type-N (m)	EPM-P, EPM and P-series* power meters	H18, H19

Available options:
H18 Extended frequency range 9 kHz to 18 GHz , power range -60 to +20 dBm (For E9304A only)
H19 Extended frequency range 9 kHz to 18 GHz , power range -50 to +30 dBm (For E9304A only)
H24 Extended frequency range 10 MHz to $24 \mathrm{GHz},-60$ to +20 dBm (APC 3.5 (m) connector) (For E9300A only)
H25 Extended frequency range 10 MHz to $24 \mathrm{GHz},-50$ to +30 dBm (APC 3.5 (m) connector) (For E9300A only)
A6J ANSI Z540 compliant calibration with test data
OB1 English language operating and service guide
ABD German language operating and service guide
ABE Spanish language operating and service guide
ABF French language operating and service guide
ABJ Japanese language operating and service guide
ABZ Italian language operating and service guide
AB1 Korean language operating and service guide

Power Sensors

E4412/13A wide dynamic range CW power sensors

100 mW sensors (-70 to +20 dBm)

Agilent model	Minimum frequency range	Maximum frequency range	Minimum power range	Maximum power range	Peak and average/ average/ CW	Maximum SWR	Connector type	Works with	Options
E4412A	10 MHz	18 GHz	$\begin{aligned} & -70 \mathrm{dBm} \\ & (100 \mathrm{pW}) \end{aligned}$	$+20 \mathrm{dBm}$ (100 mW)	CW only	10 MHz to 30 MHz 1.22 30 MHz to 2 GHz 1.15 2 GHz to 6 GHz 1.17 6 GHz to 11 GHz 1.20 11 GHz to 18 GHz 1.27	Type-N (m)	EPM-P, EPM and P-series* power meters	C01 (APC-7 connector)
E4413A	50 MHz	26.5 GHz	$\begin{aligned} & -70 \mathrm{dBm} \\ & (100 \mathrm{pW}) \end{aligned}$	$\begin{aligned} & +20 \mathrm{dBm} \\ & (100 \mathrm{~mW}) \end{aligned}$	CW only	50 MHz to 100 MHz 1.21 100 MHz to 8 GHz 1.19 8 GHz to 18 GHz 1.21 18 GHz to 26.5 GHz 1.26	$3.5 \mathrm{~mm}(\mathrm{~m})$	EPM-P, EPM and P-series* power meters	H33

Available options:
C01 APC 7 connector (For E4412A only)
H33 Extended frequency range 50 MHz to 33 GHz , power range -70 to +20 dBm (for E4413A only)
A6J ANSI Z540 compliant calibration with test data
OB1 English language operating and service guide
ABD German language operating and service guide
ABE Spanish language operating and service guide
ABF French language operating and service guide
ABJ Japanese language operating and service guide
ABZ Italian language operating and service guide

Note:

* N1917A/B/C cable adapter \& backward compatibility firmware are required

848x Average Power Sensors

Agilent model	Minimum frequency range	Maximum frequency range	Power level	Maximum SWR	Connector type	Works with	Options
25 W sensors (0 to +44 dBm)							
8481B	10 MHz	18 GHz	0 to +44 dBm	10 MHz to $2 \mathrm{GHz}: 1.10$ 2 GHz to $12.4 \mathrm{GHz}: 1.18$ 12.4 GHz to $18 \mathrm{GHz}: 1.28$	Type-N (m)	EPM series, EPM-P series, E1416A, P-series* power meters	
8482B	100 kHz	4.2 GHz	0 to +44 dBm	100 kHz to $2 \mathrm{GHz}: 1.10$ 2 GHz to 4.2 GHz: 1.18	Type-N (m)	EPM series, EPM-P series, E1416A, P-series* power meters	H01, H50
3 W sensors ($\mathbf{- 1 0}$ to +35 dBm)							
8481H	10 MHz	18 GHz	-10 to +35 dBm	10 MHz to $18 \mathrm{GHz}: 1.2$ 8 GHz to $12.4 \mathrm{GHz}: 1.25$ 12.4 GHz to $18 \mathrm{GHz}: 1.30$	Type-N (m)	EPM series, EPM-P series, E1416A, P-series* power meters	
8482H	100 kHz	4.2 GHz	-10 to +35 dBm	100 kHz to 4.2 GHz : 1.2	Type-N (m)	EPM series, EPM-P series, E1416A, P-series* power meters	
100 mW Sensors (-30 to +20 dm)							
8481A	10 MHz	18 GHz	-30 to +20 dBm	10 MHz to $30 \mathrm{MHz}: 1.4$ 30 MHz to $50 \mathrm{MHz}: 1.18$ 50 MHz to $2 \mathrm{GHz}: 1.10$ 2 GHz to 12.4 GHz : 1.78 12.4 GHz to $18 \mathrm{GHz}: 1.28$	Type-N (m)	EPM series, EPM-P series, E1416A, P-series* power meters	H42
8481A Option 001	10 MHz	18 GHz	-30 to +20 dBm	10 MHz to $30 \mathrm{MHz}: 1.4$ 30 MHz to $50 \mathrm{MHz}: 1.18$ 50 MHz to $2 \mathrm{GHz}: 1.10$ 2 GHz to 12.4 GHz : 1.78 12.4 GHz to $18 \mathrm{GHz}: 1.28$	APC-7	EPM series, EPM-P series, E1416A, P-series* power meters	
8482A	100 kHz	4.2 GHz	-30 to +20 dBm	100 kHz to $300 \mathrm{kHz}: 1.6$ 0.3 MHz to $1 \mathrm{MHz}: 1.20$ 1 MHz to $2 \mathrm{GHz}: 1.10$ 2 GHz to 4.2 GHz: 1.3	Type-N (m)	EPM series, EPM-P series, E1416A, P-series* power meters	
8483A	100 kHz	2 GHz	-30 to +20 dBm	100 kHz to $600 \mathrm{kHz}: 1.8$ 600 kHz to $2 \mathrm{GHz}: 1.18$	Type-N (m) (75 ohm)	EPM series, EPM-P series, E1416A, P-series* power meters	
8485A	50 MHz	26.5 GHz	-30 to +20 dBm	50 MHz to $100 \mathrm{MHz}: 1.15$ 100 MHz to $2 \mathrm{GHz}: 1.10$ 2 GHz to $12.4 \mathrm{GHz}: 1.15$ 12.4 GHz to $18 \mathrm{GHz}: 1.20$ 18 GHz to $26.5 \mathrm{GHz}: 1.25$	3.5 mm (m)	EPM series, EPM-P series, E1416A, P-series* power meters	
8485A Option 033	50 MHz	33 GHz	-30 to +20 dBm	50 MHz to $100 \mathrm{MHz}: 1.15$ 100 MHz to $2 \mathrm{GHz}: 1.10$ 2 GHz to $12.4 \mathrm{GHz}: 1.15$ 12.4 GHz to $18 \mathrm{GHz}: 1.20$ 18 GHz to $26.5 \mathrm{GHz}: 1.25$ 26.5 GHz to $33 \mathrm{GHz}: 1.40$	3.5 mm (m)	EPM series, EPM-P series, E1416A, P-series* power meters	
8487A	50 MHz	50 GHz	-30 to +20 dBm	50 MHz to $100 \mathrm{MHz}: 1.15$ 100 MHz to $2 \mathrm{GHz}: 1.10$ 2 GHz to $12.4 \mathrm{GHz}: 1.15$ 12.4 GHz to $18 \mathrm{GHz}: 1.20$ 18 GHz to $26.5 \mathrm{GHz}: 1.25$ 26.5 GHz to $40 \mathrm{GHz}: 1.30$ 40 GHz to $50 \mathrm{GHz}: 1.50$	2.4 mm (m)	EPM series, EPM-P series, E1416A, P-series* power meters	

Power Sensors

848x Average Power Sensors (continued)

Agilent model	Minimum frequency range	Maximum frequency range	Power level	Maximum SWR	Connector type	Works with	Options
100 mW sensors ($-30 \mathrm{to}+20 \mathrm{dm}$)							
R8486A	26.5 GHz	40 GHz	-30 to +20 dBm	1.4	waveguide flange UG-599/U	EPM series, EPM-P series, E1416A, P-series* power meters	
08486A	33 GHz	50 GHz	-30 to +20 dBm	1.5	waveguide flange UG-383/U	EPM series, EPM-P series, E1416A, P-series* power meters	
V8486A	50 GHz	75 GHz	-30 to +20 dBm	1.06	waveguide flange UG-385/U	EPM series, EPM-P series, E1416A, P-series* power meters	
W8486A	75 GHz	110 GHz	-30 to +20 dBm	1.08	waveguide flange UG-387/U	EPM series, EPM-P series, E1416A, P-series* power meters	
High sensitivity sensors (100 pW to 10 mW or $\mathbf{- 7 0}$ to $\mathbf{- 2 0 ~ d B m}$)							
8481D	10 MHz	18 GHz	-70 to -20 dBm	10 MHz to 30 MHz : 1.4 30 MHz to 4 GHz: 1.15 4 GHz to 10 GHz: 1.20 10 GHz to $15 \mathrm{GHz}: 1.30$ 15 GHz to $18 \mathrm{GHz}: 1.35$	Type-N (m)	EPM series, EPM-P series, E1416A, P-series* power meters	H51
8485D	50 MHz	26.5 GHz	-70 to -20 dBm	0.05 GHz to $0.1 \mathrm{GHz}: 1.19$ 0.1 GHz to $4 \mathrm{GHz}: 1.15$ 4 GHz to 12 GHz: 1.19 12 GHz to $18 \mathrm{GHz}: 1.25$ 18 GHz to 26.5 GHz : 1.29	3.5 mm (m)	EPM series, EPM-P series, E1416A, P-series* power meters	
8485D Option 033	50 MHz	26.5 GHz	-70 to -20 dBm	0.05 GHz to $0.1 \mathrm{GHz}: 1.19$ 0.1 GHz to $4 \mathrm{GHz}: 1.15$ 4 GHz to 12 GHz: 1.19 12 GHz to $18 \mathrm{GHz}: 1.25$ 18 GHz to $26.5 \mathrm{GHz}: 1.29$ 26.5 GHz to $33 \mathrm{GHz}: 1.35$	3.5 mm (m)	EPM series, EPM-P series, E1416A, P-series* power meters	
8487D	50 MHz	50 GHz	-70 to -20 dBm	0.05 GHz to $0.1 \mathrm{GHz}: 1.19$ 0.1 GHz to $2 \mathrm{GHz}: 1.15$ 4 GHz to 12.4 GHz : 1.20 12.4 GHz to $18 \mathrm{GHz}: 1.29$ 18 GHz to 34 GHz : 1.37 34 GHz to $40 \mathrm{GHz}: 1.61$ 40 GHz to 50 GHz : 1.89	2.4 mm (m)	EPM series, EPM-P series, E1416A, P-series* power meters	
R8486D	26.5 GHz	40 GHz	-70 to -20 dBm	1.4	waveguide flange UG-599/U	EPM series, EPM-P series, E1416A, P-series* power meters	
08486D	33 GHz	50 GHz	-70 to -20 dBm	1.4	waveguide flange UG-383/U	EPM series, EPM-P series, E1416A, P-series* power meters	

Available options:
001 Installed with APC-7 connector
H42 Factory selected for the best SWR from batch
H51 Guaranteed maximum SWR of 1.2 from 18 to 18.5 GHz (All other specifications are similar to 8481D)
H01 Extended power range from 0 to +50 dBm
H50 Allows an average input power of up to 50 Watts (+47 dBm), (25 Watts is standard power range)
033 Provides extended frequency range to 33 GHz
033 Provides extended frequency range to 33 GHz
Note:

* N1917A/B/C cable adapter \& backward compatibility firmware are required

Power meter compatibility

Power sensor families	EPM series power meter E4418B/19B	EPM-P series power meter E4416A/17A	P-series power meter N1911A/12A
E441x series	Yes	Yes	Yes*
E9300 series	Yes	Yes	Yes*
E9320 series	No	Yes	Yes*
8480 series	Yes	Yes	Yes*
N192xA series	No	No	Yes

Sensor cable compatibility

	Power sensor cable 11730 (grey)		Power sensor cable Power sensor families
E441x series	Yes	Power sensor cable (blue)	
E9300 series	Yes	Yes	N1917A/B/C
E9320 series	No	Yes	Yes
$\mathbf{8 4 8 0}$ series	Yes	Yes	Yes

[^22]N1917C P-series meter cable adapter, $10 \mathrm{M}(31 \mathrm{ft}$)
11730A Power sensor and SNS noise source cable, length 1.5 M (5 ft.)
11730B Power sensor and SNS noise source cable, length $3 \mathrm{M}(10 \mathrm{ft}$.)
11730C Power sensor and SNS noise source cable, length 6.1 M (20 ft.)
11730D Power sensor cable, length $15.2 \mathrm{M}(50 \mathrm{ft}$.)
11730E Power sensor cable, length $30.5 \mathrm{M}(100 \mathrm{ft}$.)
11730F Power sensor cable, length 61 M (200 ft.)

Note:

* N1917A/B/C cable adapter \& backward compatibility firmware are required

Spectrum Analyzer Accessories

Spectrum Analyzer Accessories

Agilent 8447D

Agilent 11975A

Agilent 8449B

Agilent 11909A

Agilent 8447 series amplifier (100 kHz to 1300 MHz)

These amplifiers feature low noise and wide bandwidths. They are ideal for improving spectrum analyzer sensitivity and noise figure while providing input isolation. Broad frequency coverage, flat frequency response, and low distortion ensure accurate measurements.

Agilent 11975A amplifier (2 to 8 GHz)

Used in stimulus-response systems, this amplifier allows a wide variety of sources to be leveled to $\pm 1 \mathrm{~dB}$ and amplitude calibrated from +6 dBm to +16 dBm . As a preamplifier, its small signal gain varies between 9 and 15 dB depending upon frequency.

Agilent 8449B preamplifier ($\mathbf{1}$ to $\mathbf{2 6 . 5} \mathbf{~ G H z}$)

This high-gain, low-noise preamplifier increases the sensitivity of any $\mathrm{RF} /$ microwave spectrum analyzer for detection and analysis of very low level signals. The improved sensitivity can dramatically reduce measurement time.

Agilent 11909A low noise amplifier (9 kHz to 1 GHz)

The Agilent 11909A amplifier improves receiver and spectrum analyzer sensitivity by offering excellent noise figure (1.8 dB typ.) and gain (32 dB). Radiated emissions from measurements using a spectrum analyzer and antenna are improved by the increased sensitivity that this unit offers. It is ideally suited for use with Agilent 11940A and 11941A close field probes to detect low level emissions.

11940A/11941A close field probe (9 kHz to $30 \mathrm{MHz} / 30 \mathrm{MHz}$ to 1 GHz)

These are hand-held probe specially designed to measure magnetic field radiation from surface currents, slots, cable, and ICs for EMC diagnostic and troubleshooting measurements. The 11940A covers 9 kHz to 30 MHz , and the 11941A covers 30 MHz to 1 GHz . Their unique design results in a high level of electric field rejection. This significantly reduces errors allowing calibrated and repeatable measurements. Each probe is calibrated and comes with a two-meter, RG-223 coaxial cable, an SMA (f) to Type-N (m) adapter, and an SMA (f) to BNC (m) adapter.

Spectrum Analyzer Accessories

Agilent 11694A 75Ω matching transformer (3 to 500 MHz)

Allows measurements in 75Ω systems while retaining amplitude calibration with a 50Ω spectrum analyzer input. VSWR is less than 1.2; insertion loss is less than 0.75 dB . See Option 001 and 002 for 75Ω versions of the Agilent 8590 series spectrum analyzer. Connectors are type BNC (m) 50Ω to BNC (f) 75Ω.

Agilent 86205A RF Bridge (300 kHz to $6 \mathrm{GHz}, 50 \Omega$)

The Agilent 86205 A high directivity 50Ω RF bridge offers unparalleled performance in a variety of general-purpose applications. It is ideal for accurate reflection measurements and signal leveling applications.

Agilent 86207A RF Bridge (300 kHz to $3 \mathrm{GHz}, 75 \Omega$)

This 75Ω Type-N RF bridge has high directivity and excellent port match from 300 kHz to 3 GHz . It is used for external reflection measurements or coupling signals from its main path.

Agilent 85024A high frequency probe

Makes in-circuit measurements easy. Input capacitance of only 0.7 pF shunted by $1 \mathrm{M} \Omega$ resistance permits high frequency probing without adverse loading of the circuit under test. Excellent frequency response and unity gain guarantee highly accurate swept measurements. High sensitivity and low distortion levels allow measurements that take full advantage of the analyzer's dynamic range. Directly compatible with many Agilent spectrum analyzers including the PSA, ESA, and 856xEC series and network analyzers like the PNA series, 4395, 871x, 875x and $872 x$.

Agilent 41800A active probe

This probe offers high input impedance from 5 Hz to 500 MHz . It works with many Agilent spectrum analyzers to evaluate the quality of circuits by measuring spurious level, harmonics, and noise. Low input capacitance offers probing with negligible circuit loading for precise, in-circuit measurements of audio, video, HF, and VHF bands.

Agilent 11742A blocking capacitor

The Agilent 11742A blocking capacitor blocks DC signals below 45 MHz and passes signals up to 26.5 GHz . Ideal for use with high frequency oscilloscopes or in biased microwave circuits, the Agilent 11742A suppresses low frequency signals that can damage expensive measuring equipment or affect the accuracy of your RF and microwave measurements.

Agilent 11694A

Agilent 86205A/86207A

Ordering information

Agilent 8447A: 0.1 to 400 MHz amplifier
Agilent 8447D: 0.1 to 1300 MHz amplifier
Agilent 11909A: 9 kHz to 1 GHz amplifier
Agilent 11975A: 2 to 8 GHz amplifier
Agilent 8449B: 1 to 26.5 GHz preamplifier
Agilent 87405B: 10 MHz to 4 GHz preamplifier
Agilent 11867A: DC to 1.8 GHz RF limiter
Agilent 11694A: 75Ω matching transformer
Agilent 11852B: 75Ω minimum-loss pad
Option 004: 50Ω Type-N (m), 75Ω Type-N (f)
Agilent 86205A: 50 Ohm RF bridge (300 KHz to 6 GHz)
Agilent 86207A: 750 hm RF bridge (300 KHz to 3 GHz)
Agilent 85024A: High-frequency probe
Agilent 41800A: 5 Hz to 500 MHz active probe
Agilent 11940A: Close field probe (9 kHz to 30 MHz)
Agilent 11941A: Close field probe (30 MHz to 1 GHz)

Spectrum Analyzer Accessories

Agilent 87405B preamplifier (10 MHz to 4 GHz)

The Agilent 87405B microwave component preamplifier brings compact, reliable gain block performance to system integrators and microwave designers. With 22 dB minimum gain block, 5 dB noise figure, and over 8 dBm output power, this amplifier offers output power where it is needed: at the test port.

Agilent 11867A limiters

These limiters can be used to protect the input circuits of spectrum analyzers, counters, amplifiers, and other instruments from high power levels with minimal effect on measurement performance. The Agilent 11867A RF limiter (DC to 1800 MHz) reflects signals up to 10 watts average power and 100 watts peak power. Insertion loss is less than 0.75 dB .

Agilent 87405B

Agilent 11867A

Waveguide Accessories

Waveguide Accessories 210

Coaxial to Waveguide Adapters211

Detectors212

Waveguide Accessories

Waveguide accessory selection guide

Type	Application	Agilent model number series ${ }^{1}$	Frequency coverage by band (GHz)							
			X	P	K	R	0	U	V	w
			$\begin{aligned} & 8.20- \\ & 12.4 \end{aligned}$	$\begin{aligned} & 12.4- \\ & 18.0 \end{aligned}$	$\begin{aligned} & 18.0- \\ & 26.5 \end{aligned}$	$\begin{aligned} & 26.5- \\ & 40.0 \end{aligned}$	$\begin{aligned} & 33.0- \\ & 50.0 \end{aligned}$	$\begin{aligned} & 40.0- \\ & 60.0 \end{aligned}$	$\begin{aligned} & 50.0- \\ & 75.0 \end{aligned}$	$\begin{aligned} & 75.0 \text { - } \\ & 110.0 \end{aligned}$
Adapters	Coaxial to waveguide interconnect	281A	X			X	X	X	X	
		281B		x		X	X	X	X	
		281C	X	X	X				X	X
		281D							X	X
Detectors	Detect RF power, CW or pulsed; measure reflection coefficient, insertion loss	422 C				x				
Calibration and verification kits ${ }^{2}$	Network analyzer accessories	$\begin{aligned} & 11644 \mathrm{~A} \\ & 11645 \mathrm{~A} \end{aligned}$	X	x	x	$\begin{array}{\|l\|} \hline x \\ x \end{array}$	$\begin{array}{\|l\|} \hline x \\ x \end{array}$	$\begin{array}{\|l\|} \hline x \\ x \end{array}$	x	$\begin{aligned} & x \\ & x \end{aligned}$

${ }^{1}$ For complete model number, add the appropriate waveguide band designator as a prefix to the model number (except mixers) e.g. the model number for a coaxial to waveguide adapter in " X " band would be X281A.
${ }^{2}$ See Network Analyzer Accessories section of this catalog for product details.

Agilent 281 series adapters

Agilent 281A, B, C series adapters transform waveguide transmission line into 50Ω coaxial line. Power can be transmitted in either direction, and each adapter covers the full frequency range of its waveguide band with SWR less than 1.3.

Specifications

Agilent model	Frequency range (GHz)	Maximum SWR	Waveguide ${ }^{1}$ designator EIA MIL-W-85/()	Flange ${ }^{1}$ designator UG-()/U MIL-F-3922/()	Coaxial connector	Length mm (in)	Shipping weight kg (b)
X281A ${ }^{2}$	8.2 to 12.4	1.25	$\begin{aligned} & \hline \text { WR-90 } \\ & 1-077 \end{aligned}$	$\begin{array}{\|l\|} \hline 135 \\ 54 C-008 \end{array}$	N (f)	35 (1.38)	0.45 (1)
X281C ${ }^{2}$	8.2 to 12.4	1.05	$\begin{aligned} & \hline \text { WR-90 } \\ & 1-077 \end{aligned}$	$\begin{array}{\|l\|} \hline 135 \\ 54 C-008 \end{array}$	APC-7 Option 012: N(m) Option 013: N(f)	73 (2.88)	0.5 (1)
P281B	12.4 to 18	1.25	$\begin{array}{l\|l\|} \hline \text { WR-62 } \\ 1-090 \end{array}$	$\begin{array}{\|l\|} \hline 419 \\ 70 \mathrm{~A}-008 \end{array}$	APC-7 Option 013: N(f)	64 (2.5)	0.5 (1)
P281C ${ }^{2}$	12.4 to 18	1.06	$\begin{array}{\|l\|l\|} \hline \text { WR-62 } \\ \text { 1-090 } \end{array}$	$\begin{array}{\|l\|} \hline 419 \\ 70 A-008 \end{array}$	APC-7 Option 012: N(m) Option 013: N(f)	52 (2)	0.5 (1)
K281C ${ }^{2}$	18 to 26.5	1.07	$\begin{aligned} & \text { WR-42 } \\ & 1-103 \end{aligned}$	$\begin{array}{\|l\|} \hline 597 \\ 54 C-002 \end{array}$	3.5 mm (f) Option 012: 3.5 mm (m)	35 (1.38)	0.5 (1)
R281A	26.5 to 40	1.13	$\begin{aligned} & \hline \text { WR-28 } \\ & 3-009 \end{aligned}$	599	2.4 mm (f)	39 (1.5)	0.2 (0.5)
R281B	26.5 to 40	1.13	$\begin{aligned} & \hline \text { WR-28 } \\ & 3-009 \end{aligned}$	599	2.4 mm (m)	39 (1.5)	0.2 (0.5)
0281A	33 to 50	1.17	$\begin{aligned} & \text { WR-22 } \\ & 3-013 \end{aligned}$	$\begin{array}{\|l\|} \hline 383 \\ 67 \mathrm{~B}-013 \\ \hline \end{array}$	2.4 mm (f)	39 (1.5)	0.2 (0.5)
0281B	33 to 50	1.17	$\begin{aligned} & \text { WR-22 } \\ & 3-013 \end{aligned}$	$\begin{array}{\|l\|} \hline 383 \\ 67 B-013 \\ \hline \end{array}$	2.4 mm (m)	39 (1.5)	0.2 (0.5)
U281A	40 to 60	1.17	WR-19	$383 \text { (mod) }$	1.85 mm (f)	39 (1.5)	0.2 (0.5)
U281B	40 to 60	1.17	WR-19	$383 \text { (mod) }$	1.85 mm (m)	39 (1.5)	0.2 (0.5)
V281A	50 to 64	1.17	WR-15	385	1.85 mm (f)	32 (1.25)	0.2 (0.5)
V281B	50 to 64	1.17	WR-15	385	$1.85 \mathrm{~mm}(\mathrm{~m})$	32 (1.25)	0.2 (0.5)
V281C	50 to 75	1.16	$\begin{aligned} & \hline \text { WR-15 } \\ & 3-018 \end{aligned}$	$\begin{array}{\|l\|} \hline 385 \\ \text { 67B-002 } \end{array}$	1.0 mm (f)	32 (1.25)	0.1 (0.2)
V281D	50 to 75	1.16	$\begin{aligned} & \text { WR-15 } \\ & 3-018 \end{aligned}$	$\begin{array}{\|l\|} \hline 385 \\ 67 B-002 \end{array}$	1.0 mm (m)	32 (1.25)	0.1 (0.2)
W281C	75 to 110	1.16	$\begin{aligned} & \text { WR-10 } \\ & 3-024 \end{aligned}$	$\begin{array}{\|l\|} \hline 387 \\ 67 \mathrm{~B}-010 \\ \hline \end{array}$	1.0 mm (f)	32 (1.25)	0.1 (0.2)
W281D	75 to 110	1.16	$\begin{aligned} & \text { WR-10 } \\ & 3-024 \end{aligned}$	$\begin{array}{\|l\|} \hline 387 \\ 67 \mathrm{~B}-010 \\ \hline \end{array}$	1.0 mm (m)	32 (1.25)	0.1 (0.2)

[^23]
Waveguide Accessories

Agilent R422C detector

The Agilent R422C is a 26.5 to 40 GHz GaAs Planar Doped Barrier diode detector. It comes standard with negative output polarity.

Specifications

Agilent model	R422C
Frequency range	26.5 to 40 GHz
Frequency response (dB)	± 0.6
Maximum SWR	1.78
Low level sensitivity (mV//W)	>0.42
Maximum input power (avg)	100 mW
Typical short term power (max. <1 minute)	1 W
Video impedance	$1.5 \mathrm{k} \Omega$
RF bypass capacitance (nominal)	10 pF
Standard output polarity	Negative
Waveguide designator ${ }^{1}$	WR-28
EIA	$3-008$
MIL-W-85/()	
Flange designator ${ }^{1}$	599
UG-()/U	$54-003$
MIL-F-3922/()	BNC (f)
Output connector	$0.5(1)$
Shipping weight - kg (lb)	

1 The Waveguide/Flange Designator is provided to determine interface dimensions and generic material of Agilent products.

Agilent R422C

Agilent waveguide product data

Agilent band designation	Frequency range TE_{10} mode (GHz)	Waveguide band designator ${ }^{1}$						Materials ${ }^{1}$	Flange designator ${ }^{1}$					
		EIA WR-($\begin{aligned} & \text { IEC } \\ & \text { R-() } \end{aligned}$	British WG-()	$\begin{aligned} & \text { JAN } \\ & \text { RG-()/U } \end{aligned}$	MIL-W85/()	Other common usage		$\frac{\text { MIL-F- }}{3922 /()}$	Cover JAN UG-()/U	$\begin{aligned} & \text { EIA } \\ & \text { CMR-() } \end{aligned}$	$\frac{\text { MIL-F }}{3922 /()}$	Choke JAN UG-()/U	$\begin{aligned} & \text { EIA } \\ & \text { CPR-() } \end{aligned}$
S	2.6 to 3.95	284	32	10	75	1-041		Alum alloy	56B-002	584	284	61-001	585A	284
G	3.95 to 5.85	187	48	12	95	1-053	C, H	Alum alloy	578-001	407	187	62-001	406B	187
J	5.85 to 8.2	137	70	14	106	1.065	Xn, C, G	Alum alloy	55B-002	441	137	60-002	440B	137
H	7.05 to 10	112	84	15	$\begin{aligned} & 51 \\ & 68 \end{aligned}$	$\begin{aligned} & 1-073 \\ & 1.072 \end{aligned}$	Xb, W	Copper alloy Alum alloy	$\begin{aligned} & \text { 54C-005 } \\ & 54 C-006 \end{aligned}$	$\begin{aligned} & \hline 51 \\ & 138 \\ & \hline \end{aligned}$	112	$\begin{array}{l\|} \hline 59 D-015 \\ 59 D-016 \end{array}$	$\begin{aligned} & \hline 522 \mathrm{~B} \\ & 137 \mathrm{~B} \end{aligned}$	112
X	8.2 to 12.4	90	100	16	$\begin{aligned} & 52 \\ & 67 \end{aligned}$	$\begin{aligned} & 1-079 \\ & 1-078 \end{aligned}$		Copper alloy Alum alloy	$\begin{array}{\|l\|} \hline 54 C-007 \\ 54 C-008 \end{array}$	$\begin{aligned} & 39 \\ & 135 \end{aligned}$	90	$\begin{array}{l\|} \hline 59 \mathrm{D}-013 \\ 59 \mathrm{D}-014 \end{array}$	$\begin{aligned} & \hline 40 B \\ & 136 B \end{aligned}$	$\overline{90}$
M	10 to 15	75	120	17	$\begin{aligned} & 346 \\ & 347 \end{aligned}$	$\begin{aligned} & 1-085 \\ & 1-084 \end{aligned}$		Copper alloy Alum alloy	$\begin{aligned} & \text { 70A-004 } \\ & 70 A-005 \end{aligned}$	-	75	$59 \mathrm{D}-010$	$-$	$-$
P	12.4 to 18	62	140	18	$\begin{aligned} & 91 \\ & 349 \end{aligned}$	$\begin{aligned} & 1-089 \\ & 1-091 \end{aligned}$	Ku, Y, U	Copper alloy Alum alloy	$\begin{array}{\|l\|} \hline 70 A-007 \\ 70 A-008 \\ \hline \end{array}$	419	$-$	$\begin{aligned} & \text { 59D-001 } \\ & 59 \mathrm{D}-002 \end{aligned}$	$541 \mathrm{~A}$	$-$
N	15 to 22	51	180	19	$\begin{aligned} & 353 \\ & 351 \end{aligned}$	$\begin{aligned} & 1-096 \\ & 1-098 \end{aligned}$		Copper alloy Alum alloy	$\begin{aligned} & \hline 70 \mathrm{~A}-010 \\ & 70 \mathrm{~A}-011 \end{aligned}$	$-$	$-$	$\begin{aligned} & \text { 69D-004 } \\ & 69 \mathrm{D}-005 \end{aligned}$	$-$	$-$
K	18 to 26.5	42	220	20	$\begin{aligned} & 53 \\ & 121 \end{aligned}$	$\begin{aligned} & \text { 1-102 } \\ & 1-104 \end{aligned}$		Copper alloy Alum alloy	$\begin{aligned} & 54 C-001 \\ & 54 C-002 \end{aligned}$	$\begin{aligned} & 595 \\ & 597 \end{aligned}$	$-$	$\begin{aligned} & \text { 59D-003 } \\ & 59 \mathrm{D}-004 \end{aligned}$	$\begin{aligned} & 596 \mathrm{~A} \\ & 598 \mathrm{~A} \end{aligned}$	$-$
R	26.5 to 40	28	320	22	96	$\begin{aligned} & 3-007 \\ & 3-009 \end{aligned}$	$\begin{aligned} & \text { V, Ka, U, } \\ & \text { A } \end{aligned}$	Copper alloy Alum alloy	$\begin{aligned} & 54 C-003 \\ & - \\ & \hline \end{aligned}$	599	$-$	$\begin{aligned} & 59 D-005 \\ & - \\ & \hline \end{aligned}$	$600 \mathrm{~A}$	$-$
0	33 to 50	22	400	23	272	$\begin{aligned} & \hline 3-011 \\ & 3-013 \\ & \hline \end{aligned}$		Copper alloy Alum alloy	$\begin{aligned} & \hline 67 B-006 \\ & 67 B-013 \\ & \hline \end{aligned}$	383	-	$-$	$-$	$-$
U	40 to 60	19	500	24	358	$3-015$ -		Copper alloy Alum alloy	$\begin{aligned} & 678-007 \\ & - \end{aligned}$	$383 \text { (mod) }$	$1-$	-	$-$	$-$
V	50 to 75	15	620	25	$\begin{aligned} & 273 \\ & - \end{aligned}$	3-018		Copper alloy Alum alloy	67B-002	385	$-$	-	$-$	-
W	75 to 110	10	900	27	359	3-024		Copper alloy Alum alloy	67B-010	$387 \text { (mod) }$		$-$	$-$	$-$

${ }^{1}$ The waveguide/flange designator is provided to determine interface dimensions and generic material of Agilent products.

Abbreviations

EIA - Electronic Industries Association
IEC - International Electrotechnical Commission
JAN - Joint Army Navy

Waveguide Accessories

Waveguide Accessories (continued)

Agilent waveguide product data (continued)

Agilent band designation	Waveguide dimensions							Cutoff frequency (GHz)	Theoretical attenuation low to high frequency (dB/100 ft)	Theoretical peak power ratinglow to high frequency megawatts (kw)	Theoretical CW power ratinglow to high frequency kilowatts (watts)
	Inside dimensions			Outside dimensions			Nom. wall thickness mm (in)				
	Width mm (in)	Height mm (in)	Tol \pm mm (in)	Width mm (in)	Height mm (in)	Tol \pm mm (in)					
S	$\begin{aligned} & 72.14 \\ & (2.84) \end{aligned}$	$\begin{aligned} & 34.04 \\ & (1.34) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.15 \\ & (0.006) \end{aligned}$	$\begin{aligned} & 76.20 \\ & (3.0) \end{aligned}$	$\begin{aligned} & 38.10 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.15 \\ & (0.006) \end{aligned}$	$\begin{aligned} & 2.03 \\ & (0.08) \\ & \hline \end{aligned}$	2.08	0.950 to 0.651	7.645 to 10.85	13.42 to 19.59
G	$\begin{aligned} & 47.55 \\ & (1.872) \end{aligned}$	$\begin{aligned} & 22.15 \\ & (0.872) \end{aligned}$	$\begin{aligned} & 0.13 \\ & (0.005) \\ & \hline \end{aligned}$	50.80	$\begin{aligned} & 25.40 \\ & (2.0) \end{aligned}$	$\begin{aligned} & 0.13 \\ & (1.0) \end{aligned}$	$\begin{aligned} & 1.63 \\ & (0.005) \end{aligned}$	$\begin{aligned} & 3.155 \\ & (0.064) \end{aligned}$	1.785 to 1.238	3.296 to 4.69	5.165 to 7.446
J	$\begin{aligned} & \hline 34.85 \\ & (1.372) \\ & \hline \end{aligned}$	$\begin{aligned} & 15.80 \\ & (0.622) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.10 \\ & (0.004) \end{aligned}$	$\begin{aligned} & 38.10 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 19.05 \\ & (0.75) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.10 \\ & (0.004) \end{aligned}$	$\begin{aligned} & 1.63 \\ & (0.064) \end{aligned}$	4.285	3.532 to 1.999	1.975 to 2.53	2.076 to 3.667
H	$\begin{aligned} & 28.50 \\ & (1.122) \end{aligned}$	$\begin{aligned} & 12.62 \\ & (0.497) \end{aligned}$	$\begin{aligned} & 0.10 \\ & (0.004) \end{aligned}$	$\begin{aligned} & 31.75 \\ & (1.250) \end{aligned}$	$\begin{aligned} & 15.88 \\ & (0.625) \end{aligned}$	$\begin{aligned} & 0.10 \\ & (0.004) \end{aligned}$	$\begin{aligned} & 1.63 \\ & (0.064) \end{aligned}$	$\begin{aligned} & 5.260 \\ & 5.260 \end{aligned}$	$\begin{aligned} & 4.114 \text { to } 3.197 \\ & 4.166 \text { to } 3.238 \end{aligned}$	$\begin{aligned} & 1.284 \text { to } 1.702 \\ & 1.284 \text { to } 1.702 \end{aligned}$	$\begin{aligned} & 1.607 \text { to } 2.067 \\ & 1.523 \text { to } 1.958 \end{aligned}$
X	$\begin{aligned} & 22.86 \\ & (0.900) \\ & \hline \end{aligned}$	$\begin{aligned} & 10.16 \\ & (0.40) \end{aligned}$	$\begin{aligned} & 0.10 \\ & (0.004) \end{aligned}$	$\begin{aligned} & 25.40 \\ & (1.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 12.70 \\ & (0.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.10 \\ & (0.004) \end{aligned}$	$\begin{aligned} & 1.27 \\ & (0.05) \\ & \hline \end{aligned}$	$\begin{aligned} & 6.560 \\ & 6.560 \end{aligned}$	$\begin{aligned} & 6.424 \text { to } 4.445 \\ & 6.506 \text { to } 4.502 \end{aligned}$	$\begin{aligned} & 0.758 \text { to } 1.124 \\ & 0.758 \text { to } 1.124 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.8621 \text { to } 1.246 \\ & 0.8169 \text { to } 1.180 \\ & \hline \end{aligned}$
M	$\begin{aligned} & 19.05 \\ & (0.75) \\ & \hline \end{aligned}$	$\begin{aligned} & 9.53 \\ & (0.375) \end{aligned}$	$\begin{aligned} & 0.08 \\ & (0.003) \end{aligned}$	$\begin{aligned} & 21.59 \\ & (0.850) \end{aligned}$	$\begin{aligned} & 12.07 \\ & (0.475) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.08 \\ & (0.003) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.27 \\ & (0.05) \end{aligned}$	$\begin{aligned} & \hline 7.847 \\ & 7.847 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.601 \text { to } 5.309 \\ & \hline 7.698 \text { to } 5.377 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.622 \text { to } 0.903 \\ & 0.622 \text { to } 0.903 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.6621 \text { to } 0.9479 \\ & 0.6273 \text { to } 0.8982 \\ & \hline \end{aligned}$
P	$\begin{aligned} & 15.80 \\ & (0.622) \end{aligned}$	$\begin{aligned} & 7.90 \\ & (0.311) \end{aligned}$	$\begin{aligned} & \hline 0.06 \\ & (0.0025) \\ & \hline \end{aligned}$	$\begin{aligned} & 17.83 \\ & (0.702) \end{aligned}$	$\begin{aligned} & 9.93 \\ & (0.391) \end{aligned}$	$\begin{aligned} & 0.08 \\ & (0.003) \end{aligned}$	$\begin{aligned} & 1.02 \\ & (1.02) \end{aligned}$	$\begin{aligned} & 9.490 \\ & 9.490 \end{aligned}$	$\begin{aligned} & 9.578 \text { to } 7.041 \\ & 9.700 \text { to } 7.131 \end{aligned}$	$\begin{aligned} & 0.457 \text { to } 0.633 \\ & 0.457 \text { to } 0.633 \end{aligned}$	$\begin{aligned} & 0.4513 \text { to } 0.6139 \\ & 0.4276 \text { to } 0.5816 \end{aligned}$
N	$\begin{aligned} & 12.95 \\ & (0.51) \\ & \hline \end{aligned}$	$\begin{aligned} & 6.48 \\ & (0.255) \end{aligned}$	0.06 (0.0025)	$\begin{aligned} & 14.99 \\ & (0.59) \\ & \hline \end{aligned}$	$\begin{aligned} & 8.51 \\ & (0.335) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.08 \\ & (0.003) \end{aligned}$	$\begin{aligned} & 1.02 \\ & (0.04) \\ & \hline \end{aligned}$	$\begin{aligned} & 11.54 \\ & 11.54 \end{aligned}$	$\begin{aligned} & 13.08 \text { to } 9.477 \\ & 13.25 \text { to } 9.598 \end{aligned}$	$\begin{aligned} & 0.312 \text { to } 0.433 \\ & 0.312 \text { to } 0.433 \end{aligned}$	$\begin{aligned} & 0.2899 \text { to } 0.4000 \\ & 0.2746 \text { to } 0.3791 \end{aligned}$
K	$\begin{aligned} & 10.67 \\ & (0.42) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.32 \\ & (0.17) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.002) \\ & \hline \end{aligned}$	$\begin{aligned} & 12.70 \\ & (0.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.35 \\ & (0.25) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.08 \\ & (0.003) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.02 \\ & (0.04) \end{aligned}$	$\begin{aligned} & 14.08 \\ & 14.08 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 20.48 \text { to } 15.04 \\ & 20.74 \text { to } 15.23 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.171 \text { to } 0.246 \\ & 0.171 \text { to } 0.246 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1565 \text { to } 0.2132 \\ & 0.1483 \text { to } 0.2020 \\ & \hline \end{aligned}$
R	$\begin{aligned} & 7.11 \\ & (0.280) \end{aligned}$	$\begin{aligned} & 3.56 \\ & (0.14) \\ & \hline \end{aligned}$	0.04 (0.0015)	$\begin{aligned} & 9.14 \\ & (0.36) \\ & \hline \end{aligned}$	$\begin{aligned} & 5.59 \\ & (0.22) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.002) \end{aligned}$	$\begin{aligned} & 1.02 \\ & (0.04) \end{aligned}$	$\begin{aligned} & 21.10 \\ & 21.10 \end{aligned}$	$\begin{aligned} & 23.02 \text { to } 15.77 \\ & 34.46 \text { to } 23.59 \end{aligned}$	$\begin{aligned} & (96.0 \text { to } 146) \\ & (96.0 \text { to } 146) \end{aligned}$	$\begin{aligned} & (109.7 \text { to } 160.1) \\ & (73.27 \text { to } 107.0) \end{aligned}$
0	$\begin{aligned} & 5.69 \\ & (0.224) \end{aligned}$	$\begin{aligned} & 2.84 \\ & (0.112) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (0.001) \end{aligned}$	$\begin{aligned} & 7.72 \\ & (0.304) \end{aligned}$	$\begin{aligned} & \hline 4.88 \\ & (0.192) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.002) \end{aligned}$	$\begin{aligned} & 1.02 \\ & (0.04) \\ & \hline \end{aligned}$	$\begin{aligned} & 26.35 \\ & 26.35 \end{aligned}$	$\begin{aligned} & 32.44 \text { to } 22.05 \\ & 48.53 \text { to } 32.99 \end{aligned}$	$\begin{aligned} & (64.4 \text { to } 97.0) \\ & (64.4 \text { to } 97.0) \end{aligned}$	$\begin{aligned} & (68.89 \text { to } 101.4) \\ & (46.05 \text { to } 67.74) \end{aligned}$
U	$\begin{aligned} & 4.78 \\ & (0.188) \end{aligned}$	$\begin{aligned} & 2.39 \\ & (0.094) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (0.001) \end{aligned}$	$\begin{aligned} & 6.81 \\ & (0.268) \end{aligned}$	$\begin{aligned} & 4.42 \\ & (0.174) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.002) \end{aligned}$	$\begin{aligned} & 1.02 \\ & (0.04) \end{aligned}$	$\begin{aligned} & 30.69 \\ & 30.69 \end{aligned}$	$39.81 \text { to } 28.60$	$\begin{aligned} & (48.0 \text { to } 70.0) \\ & (48.0 \text { to } 70.0) \end{aligned}$	(51.32 to 71.43)
V	$\begin{aligned} & \hline 3.76 \\ & (0.148) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.88 \\ & (0.074) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.03 \\ & (0.001) \\ & \hline \end{aligned}$	$\begin{aligned} & 5.79 \\ & (0.228) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.91 \\ & (0.154) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.002) \end{aligned}$	$\begin{aligned} & 1.02 \\ & (0.04) \\ & \hline \end{aligned}$	$\begin{aligned} & 39.90 \\ & 39.90 \end{aligned}$	$60.25 \text { to } 41.17$	$\begin{aligned} & (30.0 \text { to } 40.0) \\ & (30.0 \text { to } 40.0) \end{aligned}$	(30.27 to 44.30)
W	$\begin{aligned} & 2.54 \\ & (0.100) \end{aligned}$	$\begin{aligned} & 1.27 \\ & (0.05) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (0.001) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (0.18) \end{aligned}$	$\begin{aligned} & 3.30 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.002) \end{aligned}$	$\begin{aligned} & 1.02 \\ & (0.04) \end{aligned}$	$\begin{aligned} & 58.85 \\ & 58.85 \end{aligned}$	$105.6 \text { to } 74.26$	$\begin{aligned} & (14.0 \text { to } 20.0) \\ & (14.0 \text { to } 20.0 \text {) } \end{aligned}$	(14.73 to 20.86)

Frequency band data

Rectangular flanges

Figure 1. Rectangular flanges
H, X, M, P, N,
K, R Bands

Agilent flange data ($\mathbf{7 . 0 5}$ to $\mathbf{4 0 . 0} \mathbf{~ G H z}$) ${ }^{1}$

Agilent band	Waveguide designator			Flange designator			Dimensions mm (in)			
	Frequency range (GHz)	EIA	$\begin{aligned} & \text { MIL-W- } \\ & 85 /() \end{aligned}$	Material B: Copper alloy A: Alum. alloy	$\begin{aligned} & \text { JAN } \\ & \text { UG-()/U } \end{aligned}$	$\begin{aligned} & \text { MIL-F- } \\ & 3922 /() \end{aligned}$	A	B	(in)	Hole diameter
H	7.05 to 10	WR-112	$\begin{aligned} & 1.073 \\ & 1.072 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 51 \\ & 138 \end{aligned}$	$\begin{aligned} & 54 C-005 \\ & 54 C-006 \end{aligned}$	$\begin{aligned} & 17.2 \\ & (0.676) \end{aligned}$	$\begin{aligned} & 18.7 \\ & (0.737) \end{aligned}$	$\begin{aligned} & 47.6 \\ & (1.875) \end{aligned}$	$\begin{aligned} & 4.3 \\ & (0.169) \\ & \hline \end{aligned}$
X	8.2 to 12.4	WR-90	$\begin{aligned} & 1-.079 \\ & 1 .-78 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { A } \\ & \hline \end{aligned}$	$\begin{aligned} & 39 \\ & 135 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 54 C-007 \\ & 54 C-008 \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline 15.5 \\ (0.61) \\ \hline \end{array}$	$\begin{aligned} & \hline 16.3 \\ & (0.64) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41.3 \\ & (1.625) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.3 \\ & (0.169) \\ & \hline \end{aligned}$
M	10 to 15	WR.75	$\begin{aligned} & 1-085 \\ & 1-.084 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { A } \\ & \hline \end{aligned}$	$-$	$\begin{aligned} & \text { 700A-004 } \\ & 70 A-005 \end{aligned}$	$\begin{aligned} & \hline 13.2 \\ & (0.52) \\ & \hline \end{aligned}$	$\begin{aligned} & 14.2 \\ & (0.561) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38.1 \\ & (1.50) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & (0.14) \\ & \hline \end{aligned}$
P	12.4 to 18	WR-62	$\begin{aligned} & 1-089 \\ & 1-091 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	419	$\begin{aligned} & \hline \text { 70A-007 } \\ & \text { 70A-008 } \end{aligned}$	$\begin{aligned} & 12.6 \\ & (0.497) \end{aligned}$	$\begin{aligned} & 12.1 \\ & (0.478) \end{aligned}$	$\begin{aligned} & \hline 33.5 \\ & (1.32) \end{aligned}$	$\begin{aligned} & 3.7 \\ & (0.144) \end{aligned}$
N	15 to 22	WR-51	$\begin{aligned} & \hline 1-096 \\ & 1-098 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { A } \\ & \hline \end{aligned}$	-	$\begin{aligned} & 70 \mathrm{~A}-010 \\ & 70 \mathrm{~A}-011 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.3 \\ & (0.405) \\ & \hline \end{aligned}$	$\begin{aligned} & 11.3 \\ & (0.443) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 30.1 \\ & (1.187) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & (0.14) \\ & \hline \end{aligned}$
K	18 to 26.5	WR-42	$\begin{aligned} & 1-102 \\ & 1-104 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 595 \\ & 597 \end{aligned}$	$\begin{aligned} & 54 C-001 \\ & 54 C-002 \end{aligned}$	$\begin{aligned} & 8.1 \\ & (0.32) \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & (0.335) \\ & \hline \end{aligned}$	$\begin{aligned} & 22.2 \\ & (0.875) \end{aligned}$	$\begin{aligned} & 2.9 \\ & (0.116) \end{aligned}$
R	26.5 to 40	WR-28	$\begin{aligned} & 3-007 \\ & 3-009 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	599	$54-003$	$\begin{aligned} & 6.35 \\ & (0.25) \end{aligned}$	$\begin{aligned} & 6.7 \\ & (0.265) \end{aligned}$	$\begin{aligned} & 19.1 \\ & (0.75) \end{aligned}$	$\begin{aligned} & 2.9 \\ & (0.116) \end{aligned}$

[^24]
Waveguide Accessories

Waveguide Accessories (continued)

Agilent circular flange data (2.6 to 8.2 GHz) ${ }^{1}$

Agilent band	Frequency range (GHz)	Waveguide designator		Material	Flange designator	
		EIA	MIL-W-85/()		MIL-F-3922/()	JAN UG-()/U
S	2.60 to 3.95	WR-284	1-041	Alum. Alloy	56B-002	584
G	3.95 to 5.85	WR-187	1-053	Alum. Alloy	57B-001	407
J	5.85 to 8.20	WR-137	1-065	Alum. Alloy	55B-002	441

${ }^{1}$ See Figures 2a, 2b, and 2c.

Figure 2b.
Figure 2c.

Figure 2a.

Figure 3. K, R, 0, U, V, W Bands

Agilent precision circular flange data (18.0 to 110.0 GHz$)^{2}$

Agilent band	Waveguide designator			Flange designator			Dimensions mm (in)			
	Frequency range (GHz)	EIA	MIL-W- $85 /(1)$	Material B: Copper alloy A: Alum. alloy	$\begin{aligned} & \text { MIL-F- } \\ & 3922 /() \end{aligned}$	$\begin{aligned} & \text { JAN } \\ & \text { UG-()/U } \end{aligned}$	A	B	C diameter	D diameter
K	18 to 26.5	WR-42	$\begin{aligned} & 1-102 \\ & 1-104 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 67B-004 } \\ & \text { 67B-011 } \end{aligned}$	425	$\begin{aligned} & 10.7 \\ & (0.42) \end{aligned}$	$\begin{aligned} & 4.3 \\ & (0.17) \end{aligned}$	$\begin{aligned} & 28.6 \\ & (1.125) \end{aligned}$	$\begin{aligned} & 23.8 \\ & (0.9375) \end{aligned}$
R	26.5 to 40	WR-28	$\begin{aligned} & 3-007 \\ & 3-009 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 67B-005 } \\ & \text { 67B-012 } \end{aligned}$	381	$\begin{aligned} & 7.1 \\ & (0.28) \end{aligned}$	$\begin{aligned} & 3.6 \\ & (0.14) \end{aligned}$	$\begin{aligned} & 28.6 \\ & (1.125) \end{aligned}$	$\begin{aligned} & 23.8 \\ & (0.9375) \\ & \hline \end{aligned}$
0	33 to 50	WR-22	$\begin{aligned} & 3-011 \\ & 3-013 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 67B-006 } \\ & \text { 67B-013 } \end{aligned}$	383	$\begin{aligned} & 5.7 \\ & (0.224) \end{aligned}$	$\begin{aligned} & 2.8 \\ & (0.112) \end{aligned}$	$\begin{aligned} & 28.6 \\ & (1.125) \end{aligned}$	$\begin{aligned} & 23.8 \\ & (0.9375) \end{aligned}$
U	40 to 60	WR-19	$3-015$	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	67B-007	$383 \text { (mod) }$	$\begin{aligned} & 4.8 \\ & (0.188) \end{aligned}$	$\begin{aligned} & 2.4 \\ & (0.094) \end{aligned}$	$\begin{aligned} & 28.6 \\ & (1.125) \end{aligned}$	$\begin{aligned} & 23.8 \\ & (0.9375) \end{aligned}$
V	50 to 75	WR-15	$3-018$	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	67B-002	385	$\begin{aligned} & 3.8 \\ & (0.148) \end{aligned}$	$\begin{aligned} & 1.9 \\ & (0.074) \end{aligned}$	$\begin{aligned} & 19.1 \\ & (0.75) \end{aligned}$	$\begin{aligned} & 14.3 \\ & (0.5625) \end{aligned}$
W	75 to 110	WR-10	$3-024$	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	$67 B-010$	$387 \text { (mod) }$	$\begin{aligned} & 2.5 \\ & (0.10) \end{aligned}$	$\begin{aligned} & 1.3 \\ & (0.050) \end{aligned}$	$\begin{aligned} & 19.1 \\ & (0.75) \end{aligned}$	$\begin{aligned} & 14.3 \\ & (0.5625) \end{aligned}$

[^25]
Ordering Information and Local Assistance

Ordering Information and Local Assistance

Where and when to call

In the United States

Contact Agilent Call Center at 1-800-452-4844 any weekday between 8 am and 5 pm in any U.S. time zone. We serve all 50 U.S. states. Residents of Puerto Rico should contact their nearest Agilent sales office.

Outside the United States

For Agilent numbers outside the U.S., see the next page.

Have ready when you call:

- Your company's purchase order number. Or...
- Your VISA, MasterCard, or American Express card and expiration date for credit card orders.

Terms of Sale

Inside the United States

Agilent Technologies' standard terms for established customers in the U.S. are net 30 days from invoice date. Other terms are contained in the customer's purchase agreement.

Outside the United States

Please contact the nearest Agilent Technologies sales office regarding terms for orders placed with them.

Warranty

Agilent hardware products are warranted against defects in materials and workmanship. If you send us notice of such defects during the warranty period, we will either repair or replace hardware products that prove to be defective. The warranty period is controlled by the warranty statement included with the product and begins on the date of shipment.

Shipping

Inside the United States

All prices include the Agilent standard transportation and routing to any U.S. destination. If a different shipping method is needed, we will gladly ship to satisfy your requirements. Custom shipments are typically sent freight collect.

Outside the United States

Shipments outside the U.S. are made by either surface or air, as requested. Contact your sales office for details.

Ordering Information and Local Assistance

Contact Agilent

For more information on Agilent Technologies products, applications or services, please contact your local Agilent sales office. The complete listing is available at: www.agilent.com/find/contactus

China

Tel: 800-810-0189
Fax: 800-820-2816
E-mail: tm_asia@agilent.com

Hong Kong

Tel: 800-938-693
Fax: (852) 2506-9233
E-mail: tm_asia@agilent.com

India

Tel: 1600-112-929
or 0006517 MTR 67540761
Fax: 1600-113-035
E-mail: tm_ap@agilent.com

Japan

Tel: (81) 426-56-7832
Fax: (81) 426-56-7840
E-mail: contact_japan@agilent.com

Korea

Tel: 080-769-0800
Fax: 080-769-0900
E-mail: korea_call@agilent.com

Malaysia

Tel: 1-800-888-848
Fax: 1-800-801-664
E-mail: tm_ap@agilent.com

New Zealand

Tel: 0800-445-841
Fax: (64-4) 495-8950
E-mail: tm_ap@agilent.com

Singapore

Tel: 1-800-375-8100
Fax: (65) 6755-0042
E-mail: tm_ap@agilent.com

Taiwan

Tel: 0800-047-866
Fax: 0800-286-331
E-mail: tm_taiwan@agilent.com

Thailand

Tel: 1-800-226-008
or (662) 268-1345
Fax: 001-800-656-317
or (662) 268-1346
E-mail: tm_ap@agilent.com

Other Asia-Pacific Countries

Tel: (65) 6375-8100
Fax: (65) 6755-0042
E-mail: tm_ap@agilent.com

Americas

United States

Tel: 1-800-829-4444
Fax: 1-800-829-4433

Canada

Tel: 1-877-894-4414
Fax: 1-800-746-4866

Latin America

Headquarters
Tel: (305) 269-7500
Fax: (305) 269-7599

Brazil

Tel: (55 11) 41973600
Fax: (55 11) 41973800
E-mail: tmobrasil@agilent.com

Mexico

Tel: (01800) 5064800
Fax: +52 (55) 9171-5574
E-mail: linea_directa@agilent.com

Ordering Information and Local Assistance

Europe and Middle East

Austria

Tel: 0820874411
Fax: 0820874422
E-mail: contactcenter_austria@agilent.com

Belgium

Tel: +32 (0)2 404-9340
Fax: +32 (0)2 404-9395
E-mail: contactcenter_benelux@agilent.com

Denmark

Tel: +45 70131515
Fax: +4570131555
E-mail: kundeservice_danmark@agilent.com

Finland

Tel: +358 (0) 108552100
Fax: +358 (0) 108552923
E-mail: asiakaspalvelu@agilent.com

France

Tel: 0825 010700*
Fax: 0825 010701*
E-mail: contactcenter_france@agilent.com

* Numêro Indigo: 0,125 Euro HT la minute

Germany

Tel: 018052463 33*
Fax: 018052463 36*
E-mail: contactcenter_germany@agilent.com

* (0.12/min)

Ireland

Tel: +353 1890924204
Fax: +3531890924024
E-mail: contactcenter_ireland@agilent.com

Italy

Tel: +39 0292608484
Fax: +39 0295441175
E-mail: contactcenter_italy@agilent.com

Luxembourg

Tel: +32 (0)2 404-9340
Fax: +32 (0)2 404-9395
E-mail: contactcenter_benelux@agilent.com

Netherlands

Tel: +31 (0)20 5472111
Fax: +31 (0)20 5472190
E-mail: contactcenter_benelux@agilent.com

Spain

Tel: (+34) 916313300
Fax: (+34) 916313301
E-mail: contactcenter_spain@agilent.com

Sweden

Tel: 0200882255
Fax: 0201202266
E-mail: kundcenter_sverige@agilent.com

Switzerland

Tel: 0800805353
Fax: 012727373 (German)
Fax: 0225675314 (Italian)
Fax: 0225675313 (French)
E-mail:
contactcenter_switzerland@agilent.com

United Kingdom

Tel: +44 (0)7004 666666
Fax: +44 (0)7004 444555
E-mail: contactcenter_uk@agilent.com

Israel

Tel: +972 39288504
Fax: +972 39288520
E-mail: contactcenter_israel@agilent.com

Russia

Tel: +7 0957973963
Fax: +7 0957973901
E-mail: contactcenter_russia@agilent.com tmo_russia@agilent.com

New! Agilent Direct Online Store*

* Currently available to US customers only

Agilent Email Update Service Get the Latest Information and Newest Test Skills

Agilent Technologies

Agilent Email Updates

Weloome to the Aglient Emall Update Barvice

What woud yau lise is do?

- Getriciketother Emaillatote Senóve

- Innatnasitsefimilhnilmalilpdidu Smich

Cut through the clutter with timely updates on the test and measurement topics most important to you. The Agilent Email Update Service ensures that you get the latest information for making better use of Agilent equipment and helps keep your technical skills up-to-date with information on the latest technology advances.

Only the information you want, when you want it Easily identify your specific interests from a selection of more than 100 product and application areas and specify the types of information you would like to receive:

- Support information (such as new products and enhancements information/specifications, application information and technical notes on technologies and standards, tradeshows, events, and live/virtual seminars)
- What's New (including education/training and consulting services, firmware/software upgrades, and warranty, calibration and repair)

Total commitment to privacy

Agilent is proud to participate in the Better Business Bureau On-Line Privacy Program, and we adhere to all of the program's standards. We will never sell or rent your email address, nor will we share it with anyone without your consent. If you have any questions, please contact our privacy advocate via email at privacy_advocate@agilent.com

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select

Agilent's Web Site: Get News, Updated Product and Support Information, and More, 24 Hours a Day www.agilent.com/find/mta

Online Resources

- Locate product and support information with simple navigation to technical overviews, manuals, news releases, education course descriptions and schedules, and much more
- Access customer support services
- Find information on recommended replacements for discontinued products
- Place an order or check your order status in the Agilent Direct Online Store
- Subscribe to Agilent's free email update service to stay current on the latest Agilent product, support, and application information - customized for your interests and preferences

[^0]: APC-7 is a registered trademark of the Bunker Ramo Corporation.
 ${ }^{2}$ Type-N outer conductor; center pin sized for 75Ω characteristic.
 ${ }^{3}$ BNC outer conductor; center pin sized for 75Ω characteristic.
 ${ }^{4}$ SMB and SMC are often used inside Agilent instruments for inter-module RF connections. SMB is snap-on configuration. SMC is screw-on configuration.

[^1]: ${ }^{1}$ Measured at $25^{\circ} \mathrm{C}$.

[^2]: 1 See outline drawings for connector types.
 ${ }^{2}$ For use with available power supply.
 ${ }^{3}$ For use with power supply for direct connection.

[^3]: 11.27 for 6 dB attenuation.

[^4]: 1 Measured at $25^{\circ} \mathrm{C}$
 2 Not to exceed average power.

[^5]: ${ }^{1}$ See Waveguide chapter for additional products.

[^6]: ${ }^{1}$ Defined as $\pm 0.5 \mathrm{~dB}$ from ideal square law response.

[^7]: ${ }^{1}$ See page 72 for connector types.
 ${ }^{2}$ See data sheet for typical out of band data from 0.1 to 2 GHz and 18 to 20 GHz .
 ${ }^{3}$ Maximum auxiliary arm tracking: 0.3 dB for Agilent 776D; 0.5 dB for Agilent 777D.

[^8]: ${ }^{4} 30 \mathrm{~dB}$ to 2.0 GHz , input port.
 ${ }^{5}$ Apparent SWR at the output port of a coupler when used in a closed-loop leveling system.
 ${ }^{6} 24 \mathrm{~dB}$ with Type-N connector on the test port.

[^9]: $1 N=$ Nominal value: not warranted
 $S=$ Specification value: warranted
 2 Specifications apply at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
 ${ }^{3}$ Relative to the median gain.
 ${ }^{4}$ Referred to input.

[^10]: 1 Option 100 solder terminal numbers in parenthesis.
 ${ }^{2}$ Drive pin C is supply voltage.
 ${ }^{3}$ Not available on Agilent 8762F.
 ${ }^{4}$ See data sheet for additional information on these drive control alternatives.

[^11]: ${ }^{1}$ Provides position sensing when used with Agilent 87130A/70611A switch driver or customer supplied external circuitry
 ${ }^{2}$ Not to exceed 1 W average (non-switching).
 ${ }^{3}$ Measured at $25^{\circ} \mathrm{C}$.
 ${ }^{4}$ Use to 18 GHz only.

[^12]: x $x \times x \times x \times x$ x
 Sections identified by this cross-hatch symbol can be selected or bypassed; however, isolation performance will be affected (see next page for further information).

[^13]: 1 Paths 1 and 4 are not connected for Agilent 87104/204 series.

[^14]: ${ }^{1}$ Option T24 not available with Agilent 87204/206 series products.

[^15]: ${ }^{1}$ Not to exceed 1 W average.
 ${ }^{2}$ Measured at $25^{\circ} \mathrm{C}$.

[^16]: ${ }^{1} 200 \mathrm{~mA}$ is required for each RF port closed or open. Using "open all ports" (pin 16) will require up to 1200 mA (6 ports times 200 mA each). See General Operation Section.

[^17]: ${ }^{1}$ Specifications apply when connected to the Agilent PSA, 8566B or 70000 series spectrum analyzers.
 ${ }^{2}$ Typical characteristic.

[^18]: ${ }^{1}$ Typical performance.
 ${ }^{2}$ This cal device is not used in this frequency range when your calibration is using a polynomial model with Expanded Math unselected. Refer to "Two Models for Defining Calibration Standards" (pages 1 - 2 of the 85058B/E Operation Manual).

[^19]: 13.5 mm modules have precision slotless connectors that guarantee the best calibration accuracy is transferred to your system.

[^20]: 1 Specifications for the N4432A and N4433A 4-port ECal modules were unavailable at the time this catalog was prepared. For information on these models, please go to www.agilent.com/find/ecal.

[^21]: ${ }^{1}$ Limits ECal module high frequency to 7.5 GHz .

[^22]: Sensor cables:
 N1917A P-series meter cable adapter, 1.5 M (5 ft.)
 N1917B P-series meter cable adapter, $3 \mathrm{M}(10 \mathrm{ft}$.)

[^23]: 1 The Waveguide/Flange Designator is provided to determine interface dimensions and generic material of Agilent products.
 2 Option 006 adds two alignment holes.

[^24]: ${ }^{1}$ See Figure 1.
 ${ }^{2} R$ band only, hole diameter $2.38 \mathrm{~mm},-0,+0.025$

[^25]: ${ }^{2}$ See Figure 3.

